首页> 外文学位 >Convex and Non-Convex Optimizations for Recovering Structured Data: Algorithms and Analysis
【24h】

Convex and Non-Convex Optimizations for Recovering Structured Data: Algorithms and Analysis

机译:恢复结构化数据的凸优化和非凸优化:算法和分析

获取原文
获取原文并翻译 | 示例

摘要

Optimization theories and algorithms are used to efficiently find optimal solutions under constraints. In the era of "Big Data", the amount of data is skyrocketing, and this overwhelms conventional techniques used to solve large scale and distributed optimization problems. By taking advantage of structural information in data representations, this thesis offers convex and non-convex optimization solutions to various large scale optimization problems such as super-resolution, sparse signal processing, hypothesis testing, machine learning, and treatment planning for brachytherapy.;Super-resolution: Super-resolution aims to recover a signal expressed as a sum of a few Dirac delta functions in the time domain from measurements in the frequency domain. The challenge is that the possible locations of the delta functions are in the continuous domain [0,1). To enhance recovery performance, we considered deterministic and probabilistic prior information for the locations of the delta functions and provided novel semidefinite programming formulations under the information. We also proposed block iterative reweighted methods to improve recovery performance without prior information. We further considered phaseless measurements, motivated by applications in optic microscopy and x-ray crystallography. By using the lifting method and introducing the squared atomic norm minimization, we can achieve super-resolution using only low frequency magnitude information. Finally, we proposed non-convex algorithms using structured matrix completion.;Sparse signal processing: l1 minimization is well known for promoting sparse structures in recovered signals. The Null Space Condition (NSC) for l 1 minimization is a necessary and sufficient condition on sensing matrices such that a sparse signal can be uniquely recovered via l 1 minimization. However, verifying NSC is a non-convex problem and known to be NP-hard. We proposed enumeration-based polynomial-time algorithms to provide performance bounds on NSC, and efficient algorithms to verify NSC precisely by using the branch and bound method.;Hypothesis testing: Recovering statistical structures of random variables is important in some applications such as cognitive radio. Our goal is distinguishing two different types of random variables among n 1 random variables. Distinguishing them via experiments for each random variable one by one takes lots of time and efforts. Hence, we proposed hypothesis testing using mixed measurements to reduce sample complexity. We also designed efficient algorithms to solve large scale problems.;Machine learning: When feature data are stored in a tree structured network having time delay in communication, quickly finding an optimal solution to the regularized loss minimization is challenging. In this scenario, we studied a communication-efficient stochastic dual coordinate ascent and its convergence analysis.;Treatment planning: In the Rotating-Shield Brachytherapy (RSBT) for cancer treatment, there is a compelling need to quickly obtain optimal treatment plans to enable clinical usage. However, due to the degree of freedom in RSBT, finding optimal treatment planning is difficult. For this, we designed a first order dose optimization method based on the alternating direction method of multipliers, and reduced the execution time around 18 times compared to the previous research.
机译:优化理论和算法用于在约束条件下有效地找到最优解。在“大数据”时代,数据量激增,这淹没了用于解决大规模和分布式优化问题的常规技术。通过利用数据表示中的结构信息,本文为各种大型优化问题(例如超分辨率,稀疏信号处理,假设测试,机器学习和近距离治疗的治疗计划)提供了凸和非凸的优化解决方案。 -分辨率:超分辨率旨在从频域中的测量中恢复表示为时域中几个Dirac德尔塔函数的和的信号。挑战在于增量函数的可能位置在连续域[0,1)中。为了提高恢复性能,我们考虑了增量函数位置的确定性和概率先验信息,并在该信息下提供了新颖的半定程序设计公式。我们还提出了块迭代重加权方法来提高恢复性能,而无需事先提供信息。由于光学显微镜和X射线晶体学的应用,我们进一步考虑了无相测量。通过使用提升方法并引入平方原子范数最小化,我们仅使用低频幅度信息就可以实现超分辨率。最后,我们提出了使用结构化矩阵完成的非凸算法。稀疏信号处理:众所周知,l1最小化可促进恢复信号中的稀疏结构。用于l 1最小化的零空间条件(NSC)是感测矩阵的必要和充分条件,以便可以通过l 1最小化唯一地恢复稀疏信号。但是,验证NSC是非凸问题,并且已知是NP困难的。我们提出了基于枚举的多项式时间算法来提供NSC的性能边界,并提出了一种有效的算法,通过使用分支定界方法来精确地验证NSC。假设检验:恢复随机变量的统计结构在某些应用(例如认知无线电)中很重要。我们的目标是在n 1个随机变量中区分两种不同类型的随机变量。通过实验对每个随机变量进行逐一识别需要花费大量时间和精力。因此,我们提出了使用混合测量来降低样本复杂度的假设检验。我们还设计了有效的算法来解决大规模问题。机器学习:当特征数据存储在具有通信延迟的树形结构网络中时,快速找到使规则损失最小化的最佳解决方案将是一项挑战。在这种情况下,我们研究了一种通信有效的随机双坐标上升及其收敛分析。治疗计划:在旋转盾构近距离放射治疗(RSBT)中进行癌症治疗时,迫切需要快速获得最佳治疗方案以实现临床用法。但是,由于RSBT的自由度,很难找到最佳的治疗计划。为此,我们设计了一种基于乘数交替方向法的一阶剂量优化方法,与以前的研究相比,将执行时间减少了约18倍。

著录项

  • 作者

    Cho, Myung.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 268 p.
  • 总页数 268
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号