首页> 外文学位 >Prediction of Capillary Pressure and Relative Permeability Curves using Conventional Pore-scale Displacements and Artificial Neural Networks
【24h】

Prediction of Capillary Pressure and Relative Permeability Curves using Conventional Pore-scale Displacements and Artificial Neural Networks

机译:使用常规孔隙度位移和人工神经网络预测毛细管压力和相对渗透率曲线

获取原文
获取原文并翻译 | 示例

摘要

Traditional network models use simplified pore geometries to simulate multiphase flow using semi-analytical correlation-based approaches. In this work, we aim at improving these models by (I) extending the numerical methodologies to account for pore geometries with convex polygon cross sections and (II) utilizing Artificial Neural Networks (ANN) to predict flow-related properties. Specifically, we simulate fluid displacement sequences during a drainage process in bundles of capillary tubes with randomly generated convex polygon cross-sections. In the beginning, we assume that capillary tubes are fully saturated with water and that they are strongly water-wet. Then, oil is injected to displace water during the primary drainage process. The model calculates threshold capillary pressures for all randomly generated geometries using Mayer-Stowe-Princen (MS-P) method and the minimization of Helmholtz free energy for every pore-scale displacement event. Knowing pore fluid occupancies, we calculate saturations, phase conductances, and two-phase capillary pressure and relative permeability curves. These parameters are then used as input to train an ANN. ANN theories and related applications have been significantly promoted due to the fast increasing performance of computer hardware and inheratively complicated nature of some research areas. Various Artificial Intelligence (AI) applications have been developed specifically for the oil and gas industry such as AI assisted history matching, oil field production and development predictions, and reservoir characterization. The objective of this study is to develop an ANN training and predicting workflow that can be integrated with the conventional pore network modeling techniques. This hybrid model is computationally much faster which is beneficial for large-scale simulations in 3D. It could also be used to improve prediction of flow-related properties in similar rock types. Specifically, we are interested in the training of ANNs to predict threshold capillary pressures and multi-phase flowrates as a function of cross-sectional shapes and wettabilities given for each capillary tube of the bundle. To do so, we have generated multi-phase flow properties for two large datasets consisting of 40,000 and 60,000 capillary tubes each. The predictive capability of the ANN is gauged by performing some quality control steps including blind test validations. We present the results primarily by demonstrating the calculated errors and deviations for any randomly generated bundles of capillary tubes from the aforementioned dataset. We show that generating high-quality training dataset is critical to improving model's predictive capabilities for a wide range of pore geometries, e.g., shape factors and elongations. Additionally, we demonstrate that feature selection and preprocessing of the input data could significantly impact ANN's predictions. We analyze a wide range of structures for the ANN models. The Multi-layer perceptron (MLP) Neural Network with three hidden layers is adequate for dealing with the complexity and non-linearity of most of our studied cases. This model is approximately an order of magnitude faster than conventional direct calculations using a personal desktop computer with four cores CPU. Such improvement in the speed of calculations becomes extremely important when dealing with larger models, adding more dimensionality, and/or introducing pore connectivity in 3D.
机译:传统的网络模型使用简化的孔隙几何形状,以基于半分析相关性的方法模拟多相流。在这项工作中,我们旨在通过(I)扩展数值方法以解决具有凸多边形横截面的孔几何形状,以及(II)利用人工神经网络(ANN)预测与流量相关的特性来改进这些模型。具体来说,我们在排水过程中模拟了随机产生凸多边形横截面的毛细管束中的流体驱替序列。首先,我们假设毛细管​​完全被水浸透,并且被水充分润湿。然后,在一次排水过程中注入油以驱替水。该模型使用Mayer-Stowe-Princen(MS-P)方法计算所有随机生成的几何形状的阈值毛细管压力,并针对每个孔尺度位移事件最小化亥姆霍兹自由能。了解孔隙流体的占有率后,我们计算饱和度,相电导,两相毛细压力和相对渗透率曲线。然后将这些参数用作训练ANN的输入。由于计算机硬件性能的快速提高以及某些研究领域固有的复杂性,人工神经网络理论和相关应用得到了极大的促进。专门针对石油和天然气行业开发了各种人工智能(AI)应用程序,例如AI辅助历史匹配,油田生产和开发预测以及储层表征。这项研究的目的是开发可以与常规孔隙网络建模技术集成的ANN训练和预测工作流程。这种混合模型的计算速度更快,这对于3D大规模仿真是有利的。它也可以用来改善对相似岩石类型中与流动有关的特性的预测。具体而言,我们对神经网络的训练感兴趣,以预测阈值毛细管压力和多相流速作为束的每个毛细管给定的横截面形状和润湿性的函数。为此,我们为两个大型数据集(分别由40,000个毛细管和60,000个毛细管)生成了多相流动特性。通过执行一些质量控制步骤(包括盲测验证)来评估ANN的预测能力。我们主要通过演示从上述数据集中随机产生的任何毛细管束的计算误差和偏差来介绍结果。我们表明,生成高质量的训练数据集对于提高模型对各种孔隙几何形状(例如形状因子和伸长率)的预测能力至关重要。此外,我们证明了输入数据的特征选择和预处理可能会严重影响ANN的预测。我们分析了ANN模型的各种结构。具有三个隐藏层的多层感知器(MLP)神经网络足以应付我们大多数研究案例的复杂性和非线性。该模型比使用具有四核CPU的个人台式计算机的常规直接计算快大约一个数量级。在处理更大的模型,增加尺寸和/或在3D中引入孔连通性时,这种计算速度的提高变得极为重要。

著录项

  • 作者

    Liu, Siyan.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Petroleum engineering.
  • 学位 M.S.
  • 年度 2017
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号