首页> 外文学位 >Advanced mesomechanical modeling of triaxially braided composites for dynamic impact analysis with failure.
【24h】

Advanced mesomechanical modeling of triaxially braided composites for dynamic impact analysis with failure.

机译:三轴编织复合材料的高级细观力学建模,可进行失效动态影响分析。

获取原文
获取原文并翻译 | 示例

摘要

Numerical simulation plays an irreplaceable role in reducing time and cost for the development of aerospace and automotive structures, such as composite fan cases, car roof and body panels etc. However, a practical and computationally-efficient methodology for predicting the performance of large braided composite structures with the response and failure details of constituent level under both static and impact loading has yet to be developed.;This study focused on the development of efficient and sophisticated numerical analysis modeling techniques suitable for two-dimensional triaxially braided composite (TDTBC) materials and structures under high speed impact. A new finite element analysis (FEA) based mesomechanical modeling approach for TDTBC was developed independently and demonstrated both stand alone and in the combined multi-scale hybrid FEA as well. This new mesoscale modeling approach is capable of considering the detailed braiding geometry and architecture as well as the mechanical behavior of fiber tows, matrix, and the fiber tow interface, making it feasible to study the details of localized behavior and global response that happen in the complex constituents. Furthermore, it also accounts for the strain-rate effects on both elastic and inelastic behavior and the failure/damage mechanism in the matrix material, which had been long observed in experiments but were neglected for simplicity by researchers. It is capable of simulating inter-laminar and intra-laminar damage and delamination of braided composites subjected to dynamic loading. With high fidelity in both TDTBC architecture and mechanical properties, it is well suited to analyze high speed impact events with improved simulation capability in both accuracy and efficiency. Special attention was paid to the applicability of the method to relatively large scale components or structures. In addition, a novel hybrid multi-scale finite element analysis method, entitled Combined Multiscale Modeling (CMM) approach, has been developed in this comprehensive study in conjunction with dynamic submodeling technique. It was based on the newly developed mesoscale and existing macroscale approaches for modeling the braided composite materials. The CMM hybrid FEA approach enables the full use of the advantages of both the macroscale and the mesoscale approaches, with the mesoscale model or a more detailed macro-scale model to describe the details of local deformation and the macro-scale model or a coarser meso-scale model to capture the global overall response feature of the entire structure. The approach was verified with simple testing specimens and coupon plates, and may be extended to large systems like jet engine containment or automotive body panels. Without directly connecting different portions of the structure modeled with disparate approaches in the same analysis model, the submodeling technique maps the solution of a global model analysis performed for the full structure with less details onto the connecting interface on the portion of the same structure, the submodel, modeled with high fidelity and details. The CMM approach presented here captures the response feature of a triaxially braided composite structure under impact accurately with a much lower computational expense, making it feasible to analyze this type of analysis for exceedingly large structures.
机译:数值模拟在减少航空航天和汽车结构(例如复合风扇箱,车顶和车身面板等)开发的时间和成本方面起着不可替代的作用。但是,一种用于预测大型编织复合材料性能的实用且计算效率高的方法尚待开发具有静态和冲击载荷下成分水平的响应和破坏细节的结构。这项研究的重点是开发适用于二维三轴编织复合材料(TDTBC)的高效,复杂的数值分析建模技术。结构在高速冲击下。 TDTBC的一种新的基于有限元分析(FEA)的细观力学建模方法是独立开发的,它既可以单独使用,也可以在组合式多尺度混合FEA中得到展示。这种新的中尺度建模方法能够考虑详细的编织几何形状和结构以及纤维束,基体和纤维束界面的机械行为,从而使研究局部行为和全局响应的细节变得可行。复杂的成分。此外,它还说明了应变速率对基体材料的弹性和非弹性行为以及破坏/损坏机制的影响,这在实验中已被长期观察到,但为简单起见而被研究人员忽略。它能够模拟动态载荷作用下编织复合材料的层间和层内损伤以及分层。 TDTBC架构和机械性能均具有很高的保真度,因此非常适合分析高速冲击事件,同时在准确性和效率方面都具有提高的仿真能力。特别注意了该方法对较大规模的组件或结构的适用性。此外,这项综合研究还结合动态子建模技术,开发了一种新颖的混合多尺度有限元分析方法,称为组合多尺度建模(CMM)方法。它基于新近开发的中尺度和现有的宏观方法来对编织复合材料进行建模。 CMM混合有限元分析方法可充分利用宏观方法和中尺度方法的优势,并通过中尺度模型或更详细的宏观模型来描述局部变形的细节和宏观模型或较粗略的介观模型规模模型以捕获整个结构的全局总体响应特征。该方法已通过简单的试样和样板进行了验证,并且可以扩展到大型系统,例如喷气发动机安全壳或汽车车身面板。子建模技术无需在同一分析模型中直接连接使用不同方法建模的结构的不同部分,而无需将针对整个结构执行的全局模型分析的解决方案映射到同一结构的该部分的连接接口上,而该解决方案具有较少的细节。子模型,以高保真度和细节建模。此处介绍的CMM方法以较低的计算量准确捕获了冲击下的三轴编织复合结构的响应特征,这使得分析超大型结构的这种类型的分析变得可行。

著录项

  • 作者

    Nie, Zifeng.;

  • 作者单位

    The University of Akron.;

  • 授予单位 The University of Akron.;
  • 学科 Mechanical engineering.;Automotive engineering.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号