首页> 外文学位 >Transport Modeling and CFD Simulation of Membrane Gas Separation Materials and Modules.
【24h】

Transport Modeling and CFD Simulation of Membrane Gas Separation Materials and Modules.

机译:膜气分离材料和组件的运输建模和CFD模拟。

获取原文
获取原文并翻译 | 示例

摘要

Gas separation using polymer membranes has become a commercially attractive area during the last fifty years. It has wide application including nitrogen production from air, carbon dioxide and water removal from natural gas, and organic vapor removal from air or nitrogen. Theoretically there are two basic parameters to characterize the performance of the polymer membranes: permeability and selectivity. Both high permeability coefficient and selectivity are desired in order to achieve savings on both capital and operating costs. However there is a trade-off relationship between permeability and selectivity. The ability to tune the transport properties of polymer materials through changes in primary and secondary chain architecture appears to be limited by the existence of an "upper bound". Theoretical transport models and correlations have been proposed to provide guidance on structure-property relationships and the location of the upper bound. In the first part of this dissertation a novel model is developed to predict the gas transport properties. The non-equilibrium lattice fluid theory (NELF) predicts the existence of an upper bound for solubility selectivity. The theory provides very good a priori predictions of solubility and solubility selectivity. Furthermore the temperature dependence of solubility and solubility selectivity is predicted by the analysis. The NELF theoretical analysis also can be used to predict diffusivity and diffusivity selectivity in combination with transition state theory (TST). The diffusivity upper bound is investigated using model parameters to indicate the effect of properties of both gas pairs and polymeric materials. The temperature dependence of diffusivity and diffusivity selectivity is investigated. Finally gas permeability is successfully predicted and the existence of a permeability upper bound tested with the new model. Besides the influence of temperature on the permeability and permeability selectivity is evaluated with the model. Membrane modules are widely used for large scale gas separation process. Spacers are a critical component of membrane modules. Spacers provide mechanical support, create a uniform flow channel, enhance mass transfer coefficient and mitigate concentration polarization. However spacers generate higher pressure drop on both sides of channel and which increases energy input and operation cost. In the second part of this dissertation computational fluid dynamics (CFD) is used to investigate the flow within a spacer-filled channel. Three dimensional simulations were performed to visualize flow within the channel and evaluate pressure drop as a function of flow rate. The simulation method is validated by comparing results with experimental measurements for nitrogen flows. Simulations are also performed to investigate the effect of spacer geometry on velocity field and associated pressure drop. The influence of spacer geometry on the membrane module performance is examined and results show a promising effect of spacer geometry on membrane separation performance and associated module pressure drop. The effect of asymmetrical spacer design also is investigated. In contrast to a symmetrical spacer, asymmetrical spacers consist of two filaments of different diameter aligned asymmetrically to the nominal flow direction. Simulation results indicate the asymmetrical design can reduce pressure drop dramatically. Finally the multiphysics simulation is performed to study a combination of fluid flow and mass transfer process in a triple-layer spacer configuration. Effect of the density of thinner spacer adjacent to the membrane on the module performance is studied.
机译:在过去的五十年中,使用聚合物膜进行气体分离已成为具有商业吸引力的领域。它具有广泛的应用,包括从空气中产生氮气,从天然气中除去二氧化碳和水,以及从空气或氮气中除去有机蒸气。理论上,有两个基本参数可表征聚合物膜的性能:渗透率和选择性。为了实现资本和运营成本的节省,既需要高渗透率系数又需要选择性。但是,渗透率和选择性之间存在折衷关系。通过改变主链和副链结构来调节聚合物材料的传输性能的能力似乎受到“上限”的限制。已经提出了理论上的输运模型和相关性,以提供有关结构性质关系和上限位置的指导。在本文的第一部分,建立了一个新的模型来预测气体的传输特性。非平衡晶格流体理论(NELF)预测溶解度选择性的上限存在。该理论为溶解度和溶解度选择性提供了很好的先验预测。此外,通过分析预测了溶解度和溶解度选择性的温度依赖性。 NELF理论分析还可以结合过渡态理论(TST)来预测扩散率和扩散率选择性。使用模型参数研究扩散率上限,以表明气体对和聚合物材料的性能的影响。研究了扩散率和扩散率选择性的温度依赖性。最后,成功预测了气体渗透率,并使用新模型测试了渗透率上限的存在。除了温度对渗透率和渗透率选择性的影响外,还用该模型进行了评估。膜组件广泛用于大规模气体分离过程。垫片是膜组件的重要组成部分。垫片提供机械支撑,创建均匀的流动通道,增强传质系数并减轻浓度极化。然而,间隔件在通道的两侧产生较高的压降,这增加了能量输入和操作成本。在本文的第二部分中,使用计算流体动力学(CFD)来研究填充隔离物的通道内的流动。进行了三维模拟,以可视化通道内的流动并评估作为流量函数的压降。通过将结果与氮气流量的实验测量值进行比较,验证了该模拟方法的有效性。还进行仿真以研究垫片几何形状对速度场和相关压降的影响。考察了间隔物几何形状对膜组件性能的影响,结果表明,间隔物几何形状对膜分离性能和相关组件压降的影响很大。还研究了不对称垫片设计的影响。与对称垫片相反,不对称垫片由两条直径不同的细丝组成,它们与标称流动方向不对称对齐。仿真结果表明,非对称设计可以大大降低压降。最后,进行了多物理场仿真,以研究三层垫片结构中的流体流动和传质过程的组合。研究了与膜相邻的较细间隔物的密度对模块性能的影响。

著录项

  • 作者

    Lou, Yuecun.;

  • 作者单位

    The University of Toledo.;

  • 授予单位 The University of Toledo.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号