首页> 外文学位 >Comprehensive joint time-frequency analysis toward condition based maintenance regimes for electrical and mechanical components.
【24h】

Comprehensive joint time-frequency analysis toward condition based maintenance regimes for electrical and mechanical components.

机译:全面的联合时频分析,针对电气和机械组件的基于状态的维护方案。

获取原文
获取原文并翻译 | 示例

摘要

Based upon a framework of time-frequency analysis, we outline condition based maintenance (CBM), or maintenance only upon evidence of need, for both electrical and mechanical systems. We apply novel time-frequency cross-correlation metrics to helicopter drivetrain systems and electrical cables as remaining useful life assessments by non-destructive and non-invasive tests. In both cases, these metrics for health assessment provide a basis for diagnostic and prognostic analysis of underlying systems and components by performing accelerated condition tests on actual mechanical and electrical systems.;We present novel time-frequency domain vibration analysis of a gearbox failure in an AH-64 Apache drivetrain testbed and quantify transient precursors of failure where previous diagnostic methods rely on stationary power spectrum analysis to analyze non-stationary signals. Using time-frequency representations of the vibration signals, a shift in energy is seen from the first harmonic of the gearmesh frequency to the third and fourth harmonics in intermittent patterns indiscernible by the standard power spectrum over the course of 4 days leading to gearbox failure due to grease lubrication drought. We demonstrate a new form of Renyi entropy-based mutual information measure based upon Shannon and Hartley entropy and derived from a cross-time-frequency distribution of separate accelerometer vibration signals for comparing rotational harmonics from multiple bearings to create new condition indicators of damage in rotorcraft drivetrains. Baseline, unbalanced, and misaligned experimental settings of helicopter drivetrain bearings and shafts are quantitatively distinguished by the proposed techniques. With unbalance quantifiable by variance in the in-phase mutual information and misalignment quantifiable by variance in the quadrature mutual information, machine health classification is accomplished by use of statistical bounding regions.;Utilizing similar methods to form a time-frequency cross-correlation derived metric, a process for non-invasively assessing the health of low voltage instrumentation cables and medium to high voltage feeder and underground transmission cables is proposed by way of Joint Time-frequency Domain Reflectometry (JTFDR). We introduce a new standardized method for determination of the optimal reference signal for reflectometry to allow implementation of a stand-alone reflectometer device for cable testing and provide theoretical background for a more generalized time-frequency enveloping function of this reference. Fault location and life estimation methods are verified in networks of instrumentation cable, cable tray and conduit systems, multiple localized fault scenarios, simulations of faults on endless lines, and three separate thermal accelerated aging tests of low to high voltage cables. A 24 hour thermal aging test of underground 15kV, tree-resistant cross-linked polyethylene (TR-XLPE) cable simulates 90 years of service life and shows a monotonic increase in the measured JTFDR metric. This is compared to aging of similar duration for other cables utilizing silicon rubber (SIR), cross-linked polyethylene (XLPE), and ethylene propylene rubber (EPR) insulation types. Expanding on this preliminary aging, we present a 916 hour extended accelerated aging test of XLPE insulated RG-58 instrumentation cable at reduced and more realistic temperatures to simulate 30 years of service. The time-frequency optimal reference signal is updated with a separated spectrum as enveloped by a Gaussian derivative function. Lastly, we utilize a single broadband monopole surface wave launcher and receiver in combination with the JTFDR algorithm to obtain fault location and health assessment metrics non-invasively and provide fault assessment in unshielded concentric neutral cables.
机译:基于时频分析的框架,我们概述了基于条件的维护(CBM),或者仅根据电气和机械系统的需求证据进行维护。我们将新颖的时频互相关度量应用于直升机传动系统和电缆,作为通过无损和无创测试进行的剩余使用寿命评估。在这两种情况下,这些健康评估指标都可以通过对实际机械和电气系统进行加速条件测试来为基础系统和组件的诊断和预后分析提供基础。我们在变速箱故障中提出了新颖的时频域振动分析AH-64 Apache传动系统测试并量化了故障的瞬态前兆,以前的诊断方法依靠平稳的功率谱分析来分析非平稳的信号。使用振动信号的时频表示,可以观察到能量从齿轮啮合频率的一次谐波到间歇性模式中的三次谐波和第四次谐波的移动,这是标准功率谱无法识别的,在4天的过程中导致齿轮箱故障给油脂润滑干旱。我们演示了一种基于Shannon和Hartley熵的,基于Renyi熵的互信息度量的新形式,该度量是从单独的加速度计振动信号的跨时频分布中得出的,用于比较多个轴承的旋转谐波,从而创建旋翼飞机损坏的新状态指标传动系统。直升机传动系统轴承和轴的基线,不平衡和未对准的实验设置通过提出的技术进行了定量区分。通过同相互信息中的方差可量化的不平衡和正交互信息中的方差可量化的不平衡,可使用统计边界区域来完成机器健康分类。利用相似的方法形成时频互相关导出的度量通过联合时频域反射法(JTFDR),提出了一种无创评估低压仪器电缆以及中高压输电线和地下传输电缆的健康状况的方法。我们介绍了一种用于确定反射法最佳参考信号的新标准化方法,以允许实现用于电缆测试的独立反射计设备,并为该参考的更通用的时频包络功能提供理论背景。在仪器电缆,电缆桥架和导管系统的网络,多个局部故障场景,无端线路上的故障模拟以及低压到高压电缆的三个独立的热加速老化测试中,验证了故障定位和寿命估计方法。地下15kV,耐树性交联聚乙烯(TR-XLPE)电缆进行的24小时热老化测试可模拟90年的使用寿命,并显示所测JTFDR指标单调增加。与此相比,其他使用硅橡胶(SIR),交联聚乙烯(XLPE)和乙丙橡胶(EPR)绝缘类型的电缆的老化时间相似。在此初步老化的基础上,我们提出了在降低且更实际的温度下对XLPE绝缘RG-58仪表电缆进行916小时延长加速老化测试,以模拟30年的使用寿命。时频最佳参考信号使用高斯微分函数所包络的分离频谱进行更新。最后,我们结合JTFDR算法使用单个宽带单极表面波发射器和接收器,以非侵入方式获得故障位置和健康评估指标,并在非屏蔽同心中性电缆中提供故障评估。

著录项

  • 作者

    Coats, David Lee.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号