首页> 外文学位 >Micro-mechanical aspects of hydraulic fracture propagation and proppant flow and transport for stimulation of enhanced geothermal systems -- A discrete element study.
【24h】

Micro-mechanical aspects of hydraulic fracture propagation and proppant flow and transport for stimulation of enhanced geothermal systems -- A discrete element study.

机译:水力压裂裂缝扩展,支撑剂流动和运输的微观力学方面,用于增强地热系统的增产-离散元素研究。

获取原文
获取原文并翻译 | 示例

摘要

The study presented in this thesis uses micro mechanical approach to better understand hydraulic fracture initiation, propagation, proppant flow and transport and proppant settling during hydraulic fracturing of enhanced geothermal systems. Discrete Element Method (DEM) is used in two dimensions to address some of the current problems of hot dry rock fracturing. In particular, Bonded Particle Model (BPM) is used to simulate granite behavior and hydraulic fracturing. BPM is further improved using a novel convective-conductive heat transport model for studying hydro-thermo-mechanical fracturing processes. The new contributions regarding micromechanical understanding of fracturing fluid and rock behavior coupling, effect of fracturing fluid properties on fracture shape, branching, secondary fracturing and the relationship between tensile and shear micro-cracks are presented. The effects of temperature difference between fracturing fluid and surrounding rock on fracture initiation and propagation, as well as, heating of the fluid and cooling of the rock during fracture propagation are studied. Along with the process of hydraulic fracturing proppant is placed in the fracture for keeping its stable long-term aperture. Proppant is transported in the fracture in dense slurries with high viscosity fluids. The Discrete Element Method is coupled with Computational Fluid Dynamics (DEM-CFD) for studying horizontal proppant flow and transport in narrow fracture zone and proppant settling in a narrow rough granite fracture. High proppant concentrations are usually used in practice, but such systems exhibit frequent particles collisions, especially where the ratio of fracture width and particle diameter is small. The new contact model is built within DEM-CFD code that accounts for effects of fluid lubrication force on particle collisions. A thin layer of fluid between two approaching particles yields the lubrication force that dissipates particle kinetic energy. As a result, in high viscosity fluid particles remain in close vicinity and start to form agglomerate, while fluid flows around it. A comprehensive study that investigates the effects of fluid viscosity, particle and fracture width, and pressure drop and proppant concentration is given. Better understanding of conditions that lead to particle agglomerations and proppant clogging is obtained for horizontal proppant flow and transport and proppant settling in rough granite fracture.
机译:本文提出的研究利用微观力学方法更好地理解了增强型地热系统水力压裂过程中的水力压裂起始,扩展,支撑剂流动和输送以及支撑剂沉降。离散元方法(DEM)在两个维度上用于解决热干岩石压裂的一些当前问题。特别是,粘结颗粒模型(BPM)用于模拟花岗岩行为和水力压裂。使用新型对流传导热传输模型研究水热力机械压裂过程,进一步提高了BPM。提出了有关压裂流体与岩石行为耦合的微观力学理解,压裂流体性质对裂缝形状,分支,二次压裂以及拉伸微裂纹与剪切微裂纹之间关系的影响的新贡献。研究了压裂液与围岩之间的温差对裂缝萌生和扩展的影响,以及裂缝扩展过程中流体的加热和岩石的冷却。在水力压裂过程中,将支撑剂放置在裂缝中以保持其长期稳定的开孔。支撑剂在裂缝中以高粘度流体在稠密泥浆中运输。离散元方法与计算流体力学(DEM-CFD)相结合,用于研究狭窄裂缝区域中水平支撑剂的流动和运移以及花岗岩粗糙裂缝中支撑剂的沉降。在实践中通常使用高支撑剂浓度,但是这样的系统表现出频繁的颗粒碰撞,特别是在裂缝宽度和粒径之比小的情况下。新的接触模型内置于DEM-CFD代码中,该代码说明了流体润滑力对粒子碰撞的影响。在两个接近的粒子之间形成一层薄薄的流体,产生的润滑力耗散了粒子的动能。结果,在高粘度的情况下,流体颗粒保持紧密附近并开始形成附聚物,而流体则在其周围流动。进行了全面的研究,研究了流体粘度,颗粒和裂缝宽度以及压降和支撑剂浓度的影响。在粗糙的花岗岩裂缝中,水平支撑剂的流动和运输以及支撑剂的沉降可以更好地理解导致颗粒团聚和支撑剂堵塞的条件。

著录项

  • 作者

    Tomac, Ingrid.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Engineering Civil.;Engineering Geological.;Geotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号