首页> 外文学位 >The impacts of climate change and agricultural activities on water cycling of Northern Eurasia.
【24h】

The impacts of climate change and agricultural activities on water cycling of Northern Eurasia.

机译:气候变化和农业活动对欧亚大陆北部水循环的影响。

获取原文
获取原文并翻译 | 示例

摘要

The ecosystems in Northern Eurasia (NE) are important due to their vast land coverage, high rate of observed and projected warming, and the potential feedbacks they can cause on the global climate system. To understand the impacts of climate change and agricultural activities on water cycling in NE, I analysed a variety of datasets and conducted series of studies by applying a combination of modeling, in-situ observations and remote sensing data, uncertainty analysis, and model-data fusion.;Long-term unique in-situ measurements on soil moisture across multiple stations and discharge records at the outflow basins in Northern China (NC) provide us robust evidence to assess the trends of soil moisture and discharge in this region (Chapter 2). NC overlaps with NE and is one of the hot-spots experiencing the most severe water shortage in the world. Declines in soil moisture and stream flow detected via in-situ measurements in the last three decades indicate that water scarcity has been exacerbated. Multiple linear regression results indicate that intensification of agricultural activities including increase in fertilizer use, prevalence of water-expensive crops and cropland expansion appear to have aggravated these declines in this region.;Scarce evapotranspiration (ET) measurements make ET estimation via model a necessary step for better regional-scale water management. Penman--Monteith based algorithms for plant transpiration and soil evaporation were introduced into the Terrestrial Ecosystem Model (TEM) to calculate ET (Chapter 3). I then examined the response of ET and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century. It is shown that use of the Penman--Monteith based algorithms in the TEM substantially improved ET estimation on the Mongolia Plateau. Results show that regional annual ET varies from 188 to 286 mm yr-1 -- with an increasing trend -- across different climate change scenarios during the 21st century. Meanwhile, the differences between precipitation and ET suggest that the available water for human use will not change significantly during the 21st century. In addition, analyses also suggest that climate change is more important than land cover change in determining changes in regional ET.;Improvement in the accuracy of ET estimation by introducing Penman--Monteith based algorithms into the TEM motivated me to further improve the model representation of ET processes. I further modified the TEM to incorporate more detailed ET processes including canopy interception loss, ET (evaporation) from wetland surfaces, wetlands and water bodies, and snow sublimation to examine spatiotemporal variation of ET in NE from 1948 to 2009 (Chapter 4). Those modifications lead to substantial enhancement in the accuracy of estimation of ET and runoff. The consideration of snow sublimation substantially improved the ET estimates and highlighted the importance of snow in the hydrometeorology of NE. The root mean square error of discharge from the six largest watersheds in NE decreased from 527.74 km 3 yr-1 to 126.23 km3 yr-1. Meanwhile, a systematic underestimation of river discharge after 1970 indicates that other water sources or dynamics not considered in the model (e.g., melting glaciers, permafrost thawing and fires) or bias in the precipitation forcing may also be important for the hydrology of the region.;To better understand the possible causes of systematic bias in discharge estimates, I examined the impacts of forcing data uncertainty on ET and runoff estimation in NE by driving the modified TEM with five widely-used forcing data sets (Chapter 5). Estimates of regional ET vary between 263.5-369.3 mm yr-1 during 1979-2008 depending on the choice of forcing data, while the spatial variability of ET appears more consistent. Uncertainties in ET forcing propagate as well to estimates of runoff. Independent of the forcing dataset, the climatic variables that dominate ET temporal variability remain the same among all the five TEM simulated ET products. ET is dominated by air temperature in the north and by precipitation in the south during the growing season, and solar radiation and vapour pressure deficit explain the dynamics of ET for the rest of the year. While the Climate Research Unit (CRU) TS3.1 dataset of the University of East Anglia appears as a better choice of forcing via our assessment, the quality of forcing data remains a major challenge to accurately quantify the regional water balance in NE.
机译:北部欧亚大陆(NE)的生态系统之所以重要,是因为其广阔的土地覆盖范围,较高的观测和预计的变暖率以及它们可能对全球气候系统产生的潜在反馈。为了了解气候变化和农业活动对东北部地区水循环的影响,我分析了各种数据集,并结合了建模,现场观测和遥感数据,不确定性分析和模型数据进行了一系列研究。中国北方(NC)多个站点的土壤水分的长期独特原位测量和排水记录,为我们提供了强有力的证据来评估该地区的土壤水分和排水趋势(第2章) 。 NC与NE重叠,是世界上最严重缺水的热点之一。在过去的三十年中,通过现场测量检测到的土壤水分和水流的下降表明,缺水现象加剧了。多元线性回归结果表明,农业活动的加剧,包括化肥用量的增加,耗水作物的流行和农田扩张,似乎加剧了该地区的这些下降。更好地进行区域规模的水管理。将基于Penman-Monteith的植物蒸腾和土壤蒸发算法引入陆地生态系统模型(TEM)以计算ET(第3章)。然后,我研究了21世纪蒙古高原的ET和水供应对气候变化和土地覆盖变化的响应。结果表明,在TEM中使用基于Penman-Monteith的算法大大改善了蒙古高原的ET估算。结果表明,在21世纪的不同气候变化情景中,区域年ET的变化范围从188 mm-1到286 mm yr-1-并且呈上升趋势。同时,降水量和ET之间的差异表明,可供人类使用的可用水在21世纪不会发生明显变化。此外,分析还表明,在确定区域ET的变化方面,气候变化比土地覆盖变化更重要。;通过在TEM中引入基于Penman-Monteith的算法来提高ET估算的准确性,这促使我进一步改善了模型表示ET过程。我进一步修改了TEM,以结合更详细的ET过程,包括冠层截留损失,湿地表面,湿地和水体的ET(蒸发)以及雪的升华,以研究1948年至2009年东北地区ET的时空变化(第4章)。这些修改大大提高了ET和径流估算的准确性。对雪升华的考虑极大地改善了ET的估计,并突出了雪在NE水文气象学中的重要性。 NE六个最大流域的流量均方根误差从527.74 km 3 yr-1降至126.23 km3 yr-1。同时,系统地低估了1970年后的河流流量,这表明模型中未考虑的其他水源或动力学(例如冰川融化,永冻土融化和火灾)或降水强迫的偏向对于该地区的水文学也可能很重要。 ;为了更好地理解排放估算中系统偏差的可能原因,我通过使用五个广泛使用的强迫数据集来驱动修改后的TEM,研究了强迫数据不确定性对ET和NE中径流估算的影响。 1979-2008年间,区域ET的估算值在263.5-369.3 mm yr-1之间变化,具体取决于强迫数据的选择,而ET的空间变异性似乎更加一致。 ET强迫的不确定性也会传播到径流估算中。与强迫数据集无关,支配ET时间变异性的气候变量在所有五个TEM模拟ET产品中均保持相同。在生长季节,北部地区的气温和南部地区的降水主要控制着ET,太阳辐射和蒸气压赤字解释了该年剩余时间的ET动态。尽管通过我们的评估,东英吉利大学的气候研究单位(CRU)TS3.1数据集似乎是强迫的更好选择,但强迫数据的质量仍然是准确定量东北地区区域水平衡的主要挑战。

著录项

  • 作者

    Liu, Yaling.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Hydrologic sciences.;Atmospheric sciences.;Agriculture.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号