首页> 外文学位 >Prediction of transitional boundary layers and fully turbulent free shear flows, using Reynolds averaged Navier-Stokes models.
【24h】

Prediction of transitional boundary layers and fully turbulent free shear flows, using Reynolds averaged Navier-Stokes models.

机译:使用雷诺平均Navier-Stokes模型预测过渡边界层和完全湍流的自由剪切流。

获取原文
获取原文并翻译 | 示例

摘要

One of the biggest unsolved problems of modern physics is the turbulence phenomena in fluid flow. The appearance of turbulence in a flow system is regularly determined by velocity and length scales of the system. If those scales are small the motion of the fluid is laminar, but at larger scales, disturbances appear and grow, leading the flow field to transition to a fully turbulent state. The prediction of transitional flow is critical for many complex fluid flow applications, such as aeronautical, aerospace, biomedical, automotive, chemical processing, heating and cooling systems, and meteorology. For example, in some cases the flow may remain laminar throughout a significant portion of a given domain, and fully turbulent simulations may produce results that can lead to inaccurate conclusions or inefficient design, due to an inability to resolve the details of the transition process. This work aims to develop, implement, and test a new model concept for the prediction of transitional flows using a linear eddy-viscosity RANS approach. The effects of transition are included through one additional transport equation for upsilon 2 as an alternative to the Laminar Kinetic Energy (LKE) framework. Here upsilon2 is interpreted as the energy of fully turbulent, three-dimensional velocity fluctuations. The concept is based on a description of the transition process previously discussed by Walters. This dissertation presents two new single-point, physics-based turbulence models based on the transitional methodology mentioned above. The first one uses an existing transitional model as a baseline which is modified to accurately capture the physics of fully turbulent free shear flows. The model formulation was tested over several boundary layer and free shear flow test cases. The simulations show accurate results, qualitatively equal to the baseline model on transitional boundary layer test cases, and substantially improved over the baseline model for free shear flows. The second model uses the SST k -- &ohgr; fully turbulent model and again the effects of transition are included through one additional transport equation for upsilon 2. An initial version of the model is presented here. Simplicity of the formulation and ease of extension to other baseline models are two potential advantages of the new method.
机译:现代物理学中最大的未解决问题之一是流体流动中的湍流现象。流动系统中湍流的出现通常由系统的速度和长度尺度决定。如果这些比例较小,则流体的运动是层流的,但在较大比例时,会出现并增加干扰,从而导致流场过渡到完全湍流的状态。过渡流动的预测对于许多复杂的流体流动应用至关重要,例如航空,航天,生物医学,汽车,化学加工,加热和冷却系统以及气象学。例如,在某些情况下,流动可能在给定区域的很大一部分上都保持层流状态,并且由于无法解决过渡过程的细节,完全湍流的模拟可能会产生可能导致结论不正确或设计效率低下的结果。这项工作旨在开发,实施和测试使用线性涡流-粘度RANS方法预测过渡流的新模型概念。跃迁的影响通过层流2的一个附加输运方程被包括在内,以替代层流动能(LKE)框架。在这里,upsilon2被解释为完全湍流的三维速度波动的能量。该概念基于Walters先前讨论的过渡过程的描述。本文基于上述过渡方法提出了两个新的基于物理的单点湍流模型。第一个使用现有的过渡模型作为基准,对其进行了修改以准确地捕获完全湍流的自由剪切流的物理性质。在几个边界层和自由剪切流测试案例上测试了模型公式。仿真显示了准确的结果,在质量上与过渡边界层测试用例的基线模型相同,并且相对于自由剪力流的基线模型有显着改善。第二种模型使用SST k-&ohgr;完全湍流模型以及过渡的影响通过upsilon 2的一个附加输运方程被包含进来。此处介绍了该模型的初始版本。公式的简单性和易于扩展到其他基准模型的方法是新方法的两个潜在优势。

著录项

  • 作者单位

    Mississippi State University.;

  • 授予单位 Mississippi State University.;
  • 学科 Engineering Mechanical.;Physics Fluid and Plasma.;Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号