首页> 外文学位 >Rediscovering the value of crop diversity in Rwanda: Participatory variety selection and genotype by cropping system interactions in bean and maize systems.
【24h】

Rediscovering the value of crop diversity in Rwanda: Participatory variety selection and genotype by cropping system interactions in bean and maize systems.

机译:重新发现卢旺达作物多样性的价值:通过豆类和玉米系统中的作物系统相互作用,参与性品种的选择和基因型。

获取原文
获取原文并翻译 | 示例

摘要

Traditional bean (Phaseolus vulgaris L.) and maize (Zeas mays L.) cropping systems provide multiple ecosystem services to the smallholder farmers that grow them worldwide, yet plant genotypes are rarely developed for this type of cropping environment due to the complexity of the system. Farmers have been growing these systems for generations and may have additional insight into when and how to select cultivars for intercropping systems. The objectives of this study were to investigate with farmers, climbing bean genotype by cropping system interactions (G x CS) in bean-maize intercrops and to use farmer criteria in the evaluation of the provisional services provided by three cropping systems.;This research was carried out in Northern Province, Rwanda on two research stations and 7 farmers' fields. Four cropping systems were planted in a randomized complete block design for two seasons. The cropping systems were a maize sole crop (MO), a bean sole crop (BO), a bean-maize intercrop in rows (IC), and a traditional bean-maize intercrop (TC). There were six bean genotypes and one maize genotype. Yield and morphological traits were collected and analyzed. Averaged across season and location, on-station bean yields were 3.4 mt/ha in the BO, 1.5 mt/ha in the IC, and 1.9 mt/ha in the TC. Averaged across season and location, on-station maize yields were 5.1 mt/ha in the MO, 4.8 mt/ha in the IC, and 3.1 mt/ha in the TC. There were no differences in bean yield between the genotypes in the BO, but one genotype, RWV 2070, yielded significantly higher (>0.0001) than the other genotypes in the IC. Pods/plant, the major component of yield, had a significant G x CS interaction and was the only plant trait in the IC that was different between cultivars. On-station results indicate there are genotypes that have greater competitive ability than others in the IC, but aren't identifiable in the BO.;Participatory variety selection (PVS), group discussions and interviews were used to determine farmer genotype preferences and intercrop evaluation methods. Farmers evaluated on-farm trials in the same four cropping systems. Farmers' preferred the same genotypes for both cropping systems but they discussed different traits depending on the system. When selecting a genotype for an intercrop environment, farmers consider plant traits, adaptation, trait-based competitive ability, an intrinsic competitive ability, and various management strategies. Bean farmers in Rwanda use complex methods for identifying genotypes adapted to field conditions and different cropping systems, and add new insight into selection for bean genotypes in low-input environments.;Current agricultural policy in Rwanda encourages farmers to shift from diverse intercrop systems to sole crop systems but this may impact the types of services farmers gain from the cropping system. To identify trade-offs in cropping systems, on-station data was analyzed in terms of grain yield, protein content, caloric value, and economic returns including market value and land-use efficiencies. The IC intercrop system, planted in rows, provided more services than any other system and could be a viable alternative to the sole crop systems recommended by the government. Combined, these studies underscore the importance of intercrop systems and show that integrating knowledge systems improves our understanding of genotype by cropping system interactions.
机译:传统的豆类(Phaseolus vulgaris L.)和玉米(Zeas mays L.)种植系统为在世界范围内种植它们的小农提供了多种生态系统服务,但是由于系统的复杂性,很少为这种类型的种植环境开发植物基因型。农民世代相传地种植了这些系统,并且可能对何时以及如何选择间作系统的品种有更多的了解。这项研究的目的是与农民进行调查,通过豆玉米间作系统之间的互作(G x CS)来攀登豆的基因型,并使用农民标准来评估三种作物系统提供的临时服务。在卢旺达北部省的两个研究站和七个农民田间进行。四个种植系统以随机完整块设计种植了两个季节。种植系统为玉米单作(MO),豆类单作(BO),豆玉米间作(IC)和传统豆玉米间作(TC)。大豆基因型有6种,玉米基因型有1种。收集产量和形态性状并进行分析。根据季节和位置的平均值,BO的站上豆产量为3.4 mt / ha,IC的站上豆产量为1.5 mt / ha,而TC的为1.9 mt / ha。在整个季节和不同地点的平均水平,在密苏里州的玉米单产分别为5.1吨/公顷,中部IC的4.8吨/公顷和TC中的3.1吨/公顷。 BO中基因型之间的豆产量没有差异,但是一种基因型RWV 2070的产量显着高于IC中其他基因型(> 0.0001)。荚果/植物是产量的主要组成部分,具有显着的G x CS相互作用,并且是IC中唯一在不同品种之间不同的植物性状。现场结果表明,有一些基因型具有比国际竞争中的其他基因更具竞争能力,但在BO中无法识别。;采用参与式选种(PVS),小组讨论和访谈来确定农民的基因型偏好和间作评估方法。农民在相同的四个种植系统中评估了农场试验。农民倾向于两种作物系统都使用相同的基因型,但是他们根据系统讨论了不同的性状。在为间作环境选择基因型时,农民考虑植物性状,适应性,基于性状的竞争能力,内在竞争能力以及各种管理策略。卢旺达的豆农使用复杂的方法来识别适合田间条件和不同种植系统的基因型,并为低投入环境下的豆基因型选择增添了新见识。;卢旺达的现行农业政策鼓励农民从多样的间作系统转向单一作物种植系统,但这可能会影响农民从种植系统中获得的服务类型。为了确定种植系统中的权衡取舍,根据谷物产量,蛋白质含量,热值以及包括市场价值和土地利用效率在内的经济回报分析了站上数据。成排种植的IC间作系统比任何其他系统提供的服务更多,并且可以替代政府推荐的单一作物系统。综合起来,这些研究强调了间作系统的重要性,并表明整合知识系统可以通过种植系统之间的相互作用来提高我们对基因型的理解。

著录项

  • 作者

    Isaacs, Krista Brenna.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Agriculture Agronomy.;Biology Ecology.;Sustainability.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号