首页> 外文学位 >High-Solids Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste State of the Art, Outlook in Florida, and Enhancing Methane Yields from Lignocellulosic Wastes
【24h】

High-Solids Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste State of the Art, Outlook in Florida, and Enhancing Methane Yields from Lignocellulosic Wastes

机译:城市固体废物有机部分的高固体厌氧消化技术发展水平,佛罗里达州的展望,并提高木质纤维素废物的甲烷产量

获取原文
获取原文并翻译 | 示例

摘要

Anaerobic digestion (AD) is a biotechnology that employs natural microbial metabolism under oxygen-free conditions to stabilize organic waste. AD has been shown to be the most environmentally sustainable technology for treating the organic fraction of municipal solid waste (OFMSW), as it allows for the recovery of energy and nutrients from the waste. AD of OFMSW also saves landfill space and reduces leachate generation and fugitive methane emissions from landfills. High-solids AD (HS-AD) technologies (those designed to process feedstocks with >15% total solids content) have been shown to yield additional benefits when compared with liquid AD (L-AD) for treating OFMSW, including reduced parasitic energy demands, reactor volume requirements, water usage, and excess leachate generation. The goal of this research was to contribute to accelerating the implementation and improving the efficiency of HS-AD technologies. The specific objectives were to: (i) assess the state of the art of HS-AD in Europe and the US and investigate trends in development; (ii) conduct a case study assessment of the outlook for implementation of HS-AD in the state of Florida; and (iii) investigate the potential to enhance methane (CH4) yields in HS-AD of lignocellulosic wastes through bioaugmentation with pulp and paper mill anaerobic sludge. In Europe as of 2014 there were 244 full-scale AD facilities for processing OFMSW with a total capacity of almost 8 million tons per year (TPY), approximately 89% of capacity was "stand-alone" (systems treating only OFMSW), 62% was HS-AD, and 70% installed since 2009 was HS-AD. In the US, as many as 181 AD facilities are now processing OFMSW with an approximate total capacity of 780,000 TPY. Only 24% of the total capacity is currently stand-alone HS-AD with the remaining capacity being stand-alone L-AD (28%) or L-AD codigestion (48%) at wastewater treatment plants or on-farm systems.;The case study of HS-AD implementation in Florida incorporated information from industry and data from the Florida Department of Environmental Protection. There is high demand for organics recycling in Florida, with numerous counties generating several hundred thousand TPY of OFMSW and lacking organics recycling infrastructure. HS-AD implementation could increase the statewide recycling rate by as much as 13% and contribute significantly to the reaching the state's recycling goal of 75% by 2020. Furthermore, up to 7,000 and 3,500 TPY of bioavailable nitrogen and phosphorus, respectively, and up to 500 MW of energy could be recovered through HS-AD of OFMSW in the state. Based on current energy conversion efficiencies, 500 MW of energy translates to either 175 MW of electricity (approximately 660,000 metric tons of CO2 equivalents offsets per year) and 200 MW of heat or nearly 80 million diesel gallon equivalents of vehicle fuel. However, because of the low cost of both landfilling and energy in the state and the lack of markets for compost and renewable energy certificates, legislative action is needed to improve the economic feasibility of HS-AD. Accordingly, a number of policy recommendations were formulated, including banning disposal of OFMSW to landfills and mandating source-separation of OFMSW by all generation sources.;Two phases of side-by-side bench-scale batch HS-AD experiments were carried out to investigate the potential to enhance CH4 yield from lignocellulosic waste in HS-AD through bioaugmentation with pulp and paper mill anaerobic sludge. In the first phase, the average CH4 yield from yard waste inoculated with pulp and paper sludge reached 100.2 +/- 2.4 L CH4/kg VS, a 73% enhancement compared with the average CH4 yield achieved through inoculation with domestic wastewater anaerobic sludge (58.1 +/- 1.2 L CH4/kg VS). In the second phase, CH4 yield from yard waste inoculated with digestate from digesters originally inoculated with pulp and paper sludge was 68% greater than the CH4 yield achieved through inoculation of yard waste with digestate from digesters originally inoculated with domestic wastewater sludge (36.5 +/- 0.2 L CH4/kg VS versus 21.7 +/- 0.4 L CH4/kg VS). The enhancement in CH4 yield achieved in this study is comparable to enhancements achieved through lignocellulosic pretreatment methods. However, this strategy incurs significantly less additional environmental and economic costs when compared with pretreatment, suggesting that it could serve as an alternative to pretreatment and improve the overall sustainability of HS-AD processes. (Abstract shortened by UMI.).
机译:厌氧消化(AD)是一种在无氧条件下利用天然微生物代谢来稳定有机废物的生物技术。 AD被证明是用于处理城市固体废物(OFMSW)有机部分的最环保的技术,因为它可以回收废物中的能量和养分。 OFMSW的AD还节省了垃圾填埋场,减少了垃圾渗滤液的产生以及垃圾填埋场产生的逃逸性甲烷排放。与用于处理OFMSW的液体AD(L-AD)相比,高固体AD(HS-AD)技术(那些用于处理总固体含量超过15%的原料的技术)已显示出更多的好处,包括减少了寄生能量需求,反应器体积要求,用水量和过量的沥滤液产生。这项研究的目的是为加快HS-AD技术的实施和提高效率做出贡献。具体目标是:(i)评估欧美HS-AD的技术水平并调查发展趋势; (ii)对佛罗里达州HS-AD的实施前景进行案例研究评估; (iii)研究通过纸浆和造纸厂厌氧污泥的生物强化来提高木质纤维素废物HS-AD中甲烷(CH4)产量的潜力。截至2014年,欧洲有244个用于处理OFMSW的大型AD设施,总产能为每年近800万吨(TPY),其中约89%的容量为“独立”(仅处理OFMSW的系统),62 %是HS-AD,自2009年以来安装的70%是HS-AD。在美国,目前有多达181个AD设施正在处理OFMSW,总产能约为780,000 TPY。目前,单机HS-AD仅占总容量的24%,其余容量是废水处理厂或农场系统中的单机L-AD(28%)或L-AD共消化(48%)。佛罗里达州HS-AD实施案例研究结合了行业信息和佛罗里达州环境保护局的数据。佛罗里达州对有机物的回收有很高的需求,许多县产生了数十万吨的OFMSW,并且缺乏有机物的回收基础设施。 HS-AD的实施可将全州的回收率提高多达13%,并为实现到2020年达到75%的州回收率目标做出重大贡献。此外,生物可利用氮和磷的最高处理量分别为7,000和3500 TPY通过该州OFMSW的HS-AD可以回收到500兆瓦的能源。根据当前的能量转换效率,500 MW的能量转换为175 MW的电力(每年可抵消约660,000公吨的二氧化碳当量)和200 MW的热量或近8,000万柴油加仑的当量燃料。但是,由于该州的填埋场和能源成本都很低,并且缺乏堆肥和可再生能源证书的市场,因此需要采取立法行动来改善HS-AD的经济可行性。因此,制定了一系列政策建议,包括禁止将OFMSW丢弃到垃圾填埋场,并强制所有来源将OFMSW进行源头分离。;进行了两个阶段的并行规模HS-AD批量实验研究通过纸浆和造纸厂厌氧污泥的生物强化来提高HS-AD中木质纤维素废料的CH4产量的潜力。在第一阶段,纸浆和造纸污泥接种的院子垃圾的平均CH4产量达到100.2 +/- 2.4 L CH4 / kg V​​S,与接种生活污水厌氧污泥的平均CH4产量相比提高了73%(58.1 +/- 1.2 L CH4 / kg V​​S)。在第二阶段中,用原先用纸浆和造纸污泥接种的消化池中的消化物接种的院子废物中的CH4产量,比用原本用生活污水污泥接种的消化池中的消化物接种的院子废物中的CH4产量高68%(36.5 + / -0.2升CH4 / kg V​​S,而21.7 +/- 0.4升CH4 / kg V​​S)。在这项研究中,CH4产量的提高与通过木质纤维素预处理方法获得的产量相当。但是,与预处理相比,该策略所产生的额外环境和经济成本要少得多,这表明它可以替代预处理并改善HS-AD工艺的总体可持续性。 (摘要由UMI缩短。)。

著录项

  • 作者

    Hinds, Gregory Richard.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Environmental engineering.;Civil engineering.
  • 学位 M.S.E.V.
  • 年度 2015
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号