首页> 外文学位 >A Techno-economic Study on the Waste Heat Recovery Options for Wet Cooled Natural Gas Combined Cycle Power Plants
【24h】

A Techno-economic Study on the Waste Heat Recovery Options for Wet Cooled Natural Gas Combined Cycle Power Plants

机译:湿冷天然气联合循环发电厂余热回收方案的技术经济研究

获取原文
获取原文并翻译 | 示例

摘要

Increasing ambient temperature is known to have negative impacts on the performance of gas turbine and combined cycle power plants. There have been multiple approaches to mitigate this performance reduction. One such method involves cooling of the gas turbine inlet air. There are several different commercial techniques available, but they are energy intensive and require large capital investments. One potential option for cost reduction is to recover the waste heat emanating from the power plants to operate thermally activated cooling systems to cool the turbine inlet air. In this study, a 565 MW natural gas combined cycle power plant subjected to different waste heat recovery scenarios and gas turbine inlet chilling is assessed. A simplified thermodynamic and heat transfer model is developed to predict the performance of an evaporatively cooled NGCC power plant at varying ambient conditions. By taking typical meteorological year (TMY3) hourly weather data for two different locations -- Los Angeles, California and Houston, Texas -- the yearly output for this plant is predicted at a 100% capacity factor. The feasibilities of different waste heat recovery (WHR) systems including a gas turbine exhaust driven absorption chiller, a flue gas driven absorption chiller, a steam driven absorption chiller, and an electrically driven vapor compression chiller are assessed by calculating the Levelized Cost of Electricity (LCOE) for each scenario. In each of these cases, a parametric analysis was performed on the COP and the costs ($ per kWth) of the system. In these cases, the COP was varied from 0.2 to 2.0 (increments of 0.2), whereas the costs were varied logarithmically from $10 to $10,000 per kWth. The results of the analysis showed that for a fixed WHR system cost (i.e., $ per kW th), the system powered by flue gas generated the lowest LCOE, followed by the electrically-driven vapor compression chiller, steam-heated chiller, and finally, the gas turbine exhaust driven chiller for both geographic locations at all COP combinations. The analysis also investigated the impact of fixed investment cost, and the flue gas system again yielded the smallest LCOE and yielded a lower LCOE than the baseline case (no WHR) over a wide range of COPs. The maximum costs each of these systems could tolerate before the LCOE is higher than the baseline case was also determined. The flue gas driven absorption system had the highest tolerable costs at all COP combinations, followed by the vapor compression, steam, and gas turbine exhaust driven systems. As such, the flue gas powered system was identified as the most economic system to reduce the LCOE from the baseline case for a wide range of COP combinations at high tolerable costs for these two locations.
机译:众所周知,环境温度的升高会对燃气轮机和联合循环发电厂的性能产生负面影响。已经有多种方法来减轻这种性能降低。一种这样的方法涉及冷却燃气轮机进气。有几种不同的商业技术可用,但是它们消耗大量能源,并且需要大量资本投资。降低成本的一种可能选择是回收发电厂产生的废热,以运行热激活的冷却系统来冷却涡轮机进气。在这项研究中,评估了一个565兆瓦的天然气联合循环发电厂,该发电厂经受了不同的余热回收方案和燃气轮机入口冷却。开发了简化的热力学和热传递模型,以预测在变化的环境条件下蒸发冷却的NGCC电厂的性能。通过获取两个不同地点(加利福尼亚州洛杉矶和德克萨斯州休斯顿)的典型气象年(TMY3)每小时天气数据,预计该工厂的年产量为100%的产能系数。通过计算平准化的电力成本,评估包括燃气轮机排气驱动吸收式制冷机,烟气驱动吸收式制冷机,蒸汽驱动吸收式制冷机和电动蒸汽压缩式制冷机在内的不同废热回收(WHR)系统的可行性( LCOE)。在每种情况下,都对COP和系统成本(每千瓦时$)进行了参数分析。在这些情况下,COP从0.2到2.0(增量为0.2)变化,而成本从10美元到10,000美元/ kWth呈对数变化。分析结果表明,对于固定的WHR系统成本(即每千瓦时$),以烟气为动力的系统产生的LCOE最低,其次是电动蒸气压缩式制冷机,蒸汽加热式制冷机,最后是,这是在所有COP组合下针对两个地理位置的燃气轮机废气驱动式冷却器。分析还调查了固定投资成本的影响,烟气系统再次产生了最小的LCOE,并且在广泛的COP范围内,LCOE均比基线情况(无WHR)低。还确定了这些系统在LCOE高于基准情况之前可以承受的最大成本。烟气驱动吸收系统在所有COP组合中具有最高的可承受成本,其次是蒸汽压缩,蒸汽和燃气轮机排气驱动系统。因此,烟气动力系统被认为是最经济的系统,可在较广泛的COP组合使用基线的情况下,以较低的成本为这两个地点降低LCOE。

著录项

  • 作者

    Paudel, Achyut.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2018
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号