首页> 外文学位 >Exploring Phase Transitions Using Conventional Monte Carlo Simulations and Machine Learning Techniques
【24h】

Exploring Phase Transitions Using Conventional Monte Carlo Simulations and Machine Learning Techniques

机译:使用常规的蒙特卡洛模拟和机器学习技术探索相变

获取原文
获取原文并翻译 | 示例

摘要

In condensed matter physics, researchers study the physical properties of condensed phases of matter, theoretically or experimentally. The fundamentally appealing topic in this research area is how to classify phases of matter and identify phase transitions between them.;Different from traditional theoretical or experimental approaches, which relies on either complicated mathematical formulation or equally complex experimental equipment, Monte Carlo based stochastic methods, which are often treated as ``computer experiments", introduce a relatively ``cheap" but effective approach to study phases and phase transitions. In this dissertation, we employ the classical Monte Carlo simulation, which utilizes the Metropolis algorithm to evolve system configurations, and also the determinant quantum Monte Carlo simulation to study phases and phase transitions of model Hamiltonians, such as the Hubbard model, and the periodic Anderson model (PAM).;In the 21st century, data driven machine learning techniques have proven to be an another research ``engine" for detecting phases and phase transitions. In this dissertation, I explore potential usages of unsupervised machine learning techniques in phase transition. Specifically, I leverage the principal component analysis (PCA) to extract internal structures, which are fully reflected in leading principal components, of Monte Carlo generated configurations, and then quantify obtained principal components to distinguish phases and phase transitions. This technique is applied to study model Hamiltonians, such as the Ising model, the XY model, the Hubbard model and the PAM.;The exact organization of this dissertation is as follows: In chapter 1, I first introduce basic concepts of phase transitions and related model Hamiltonians. In chapter 2, I talk about a variety of methodologies utilized. In chapter 3, I present studies of phase transitions in a spin-fermion model. In chapter 4, I explore phase diagrams of the PAM coupled with an additional layer of metal. In chapter 5 and 6, I discuss how to apply machine learning techniques, especially PCA, to distinguish phases and detect phase transitions in classical and quantum model Hamiltonians. In chapter 7, I summarize previous chapters and discuss potential future directions.
机译:在凝聚态物理学中,研究人员从理论上或实验上研究了物质凝聚相的物理性质。该研究领域最吸引人的主题是如何对物质的相进行分类并确定它们之间的相变。与传统的理论或实验方法不同,后者依赖于复杂的数学公式或同样复杂的实验设备,基于蒙特卡洛的随机方法,通常被视为``计算机实验''的计算机,引入了一种相对``便宜''但有效的方法来研究阶段和相变。本文采用经典的蒙特卡洛模拟方法,利用Metropolis算法演化系统结构,同时采用行列式量子蒙特卡洛模拟方法研究哈密顿模型和周期安德森方程等哈密顿模型的相变。模型(PAM)。在21世纪,数据驱动的机器学习技术被证明是用于检测相变和相变的另一种研究“引擎”。在本文中,我探索了无监督机器学习技术在相变中的潜在用途。具体来说,我利用主成分分析(PCA)来提取内部结构,该结构完全反映了Monte Carlo生成的配置的主要主成分,然后对获得的主成分进行量化以区分相和相变。研究哈密顿模型,例如伊辛模型,XY模型,哈伯德模型和e.PAM .;本文的确切组织如下:在第一章中,我首先介绍了相变的基本概念和相关模型哈密顿量。在第二章中,我讨论了所使用的各种方法。在第三章中,我介绍了自旋费米子模型中的相变研究。在第4章中,我将探讨PAM与附加金属层耦合的相图。在第5章和第6章中,我将讨论如何应用机器学习技术(尤其是PCA)来区分经典模型和量子模型哈密顿量中的相并检测相变。在第7章中,我总结了前几章,并讨论了潜在的未来方向。

著录项

  • 作者

    Hu, Wenjian.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Condensed matter physics.;Computational physics.;Computer science.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号