首页> 外文学位 >Coupling Chemical and Biological Catalysis to Produce Biorenewable Chemicals.
【24h】

Coupling Chemical and Biological Catalysis to Produce Biorenewable Chemicals.

机译:将化学和生物催化耦合以生产生物可再生化学物质。

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in metabolic engineering have allowed for the production of a wide array of molecules via biocatalytic routes. The high selectivity of biocatalysis to remove functionality from biomass can be used to produce platform molecules that are suitable for subsequent upgrading over heterogeneous catalysts. Accordingly, the more robust continuous processing allowed by chemical catalysis could be leveraged to upgrade biologically-derived platform molecules to produce direct or functional replacements for petroleum products. This thesis discusses our progress in developing processes that utilize a combination of chemical and biological catalysis, and using the perspective of heterogeneous chemical catalysis we identify and address challenges associated with bridging the gap between the two catalytic approaches.;Chapter 3 and Chapter 4 focus on the development of new chemistry that utilizes bio-catalytically-derived platform molecules to yield high-value biorenewable chemicals. In Chapter 3 we show that furylglycolic acid (FA), a pseudo-aromatic hydroxy-acid suitable for co-polymerization with lactic acid, can be produced from glucose via enzymatically derived cortalcerone using a combination of Bronsted and Lewis acid catalysts. Cortalcerone is first converted to furylglyoxal hydrate (FH) over a Bronsted acid site, and FH is subsequently converted to FA over a Lewis acid site. In Chapter 4, Triacetic acid lactone is demonstrated to be a versatile biorenewable molecule with potential as a platform chemical for the production of commercially valuable bifunctional chemical intermediates and end products, such as sorbic acid. In Chapter 8 we extend this chemistry to the upgrading of 4-hydroxycoumarin to produce high-value pharmaceutical building blocks.;Chapter 5 demonstrates that supported Ni, Pt, and Pd catalysts used for liquid phase hydrogenation are inhibited by the biogenic impurities present in biologically-derived feedstocks used to produce high-value chemicals. This inhibition is addressed in Chapter 6, where we show that microenvironments formed around catalytic active sites mitigate catalyst deactivation by biogenic impurities present during production of biorenewable chemicals from biologically-derived species. Finally, in Chapter 7, we use transition state theory as applied to thermodynamically non-ideal systems to explore the origins of the improved stability and activity that we observed in Chapter 6. We conclude with a discussion of future directions.
机译:代谢工程学的最新进展已允许通过生物催化途径生产各种各样的分子。从生物质中除去官能团的生物催化的高选择性可用于生产平台分子,该平台分子适合于随后通过非均相催化剂进行提质。因此,可以利用化学催化所允许的更鲁棒的连续加工来升级生物来源的平台分子以产生石油产品的直接或功能替代品。本文讨论了我们在开发利用化学和生物催化相结合的方法方面的进展,并使用多相化学催化的观点,我们确定并解决了弥合两种催化方法之间的空白所带来的挑战。第三章和第四章着重利用生物催化衍生的平台分子产生高价值的生物可再生化学品的新化学技术的发展。在第3章中,我们表明,呋喃基乙醇酸(FA)是一种适合与乳酸共聚的假芳族羟基酸,可以通过使用Bronsted和Lewis酸催化剂的组合,通过酶促衍生的椰油酮从葡萄糖中生成。首先将Corcercerone通过布朗斯台德酸位点转化为呋喃乙二醛水合物(FH),然后将FH通过路易斯酸位点转化为FA。在第4章中,三乙酸内酯被证明是一种通用的生物可再生分子,具有用作生产商业上有价值的双功能化学中间体和最终产品(如山梨酸)的平台化学品的潜力。在第8章中,我们将这种化学方法扩展到了4-羟基香豆素的生产,以生产出高价值的药物。第5章证明,用于液相加氢的负载型Ni,Pt和Pd催化剂受到生物中存在的生物杂质的抑制。于生产高价值化学品的原料。在第6章中讨论了这种抑制作用,其中我们证明了在催化活性位点周围形成的微环境减轻了由生物衍生物种生产生物可再生化学品过程中存在的生物杂质造成的催化剂失活。最后,在第7章中,我们将过渡态理论应用于热力学非理想系统,以探讨在第6章中观察到的改善的稳定性和活性的起源。最后,我们讨论了未来的发展方向。

著录项

  • 作者

    Schwartz, Thomas J.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号