首页> 外文学位 >Extension Of Stress-Based Finite Element Model Using Resilient Modulus Material Characterization To Develop A Theoretical Framework for Realistic Response Modeling of Flexible Pavements on Cohesive Subgrades.
【24h】

Extension Of Stress-Based Finite Element Model Using Resilient Modulus Material Characterization To Develop A Theoretical Framework for Realistic Response Modeling of Flexible Pavements on Cohesive Subgrades.

机译:扩展基于弹性模量材料特征的基于应力的有限元模型,以开发一种理论上的框架,用于对粘性路基上的柔性路面进行真实的响应建模。

获取原文
获取原文并翻译 | 示例

摘要

Pavement design methodologies have over the past decades seen philosophical evolutions and eventually practical implementation of new postulates. As more contributions are made by pavement researchers to the State-of-the-Art in pavement design, there exist a chasm between pavement engineers and state-of-the-art pavement research in terms of incorporation into pavement design guidelines. In developing countries such as Guyana in South America, as well as several departments of transportation, municipalities and townships in the United States, pavement engineers still use the American Association of State Highway and Transportation Officials (AASHTO) Pavement Design Guide (1993). This empirical pavement design guide and its previous iterations were based primarily on data that was collected and processed from the then American Association of State Highway Officials (AASHO) Road Test conducted between 1958 and 1960. The limitations with continued use of this method are obvious since the data was gathered under specific environmental conditions, a specific subgrade type, and with specific materials as well as specific pavement cross-sections. The continued use of this guide does not account for advances in material technology, different types and volumes of vehicular traffic, changing climatic conditions and also can be costly in expanding road networks. To solve this dilemma pavement researchers started working toward a more mechanistic approach for design and through the work of National Cooperative Highway Research Program (NCHRP), culminated in the publishing of the Mechanistic-Empirical Pavement Design Guide (MEPDG) in 2004. The finite element model used in the MEPDG is premised upon a displacement based theory. These theories are capable of making good predictions regarding global responses such as displacements and sometimes in-plane stresses but not the transverse stress distribution. To predict transverse stress distribution, stress based theories are more suitable for use in formulations. At The Ohio State University, Chyou (1989), Schoeppner (1991) and Butalia (1996) worked on different versions of the stress based model for composite laminates. This model was initially extended by Tu (2007) to good effect for analyzing the responses in pavement systems. In this research effort, this response model is being further extended to incorporate a material characterization model into the stiffness matrix for more accurate structural response predictions. The material characterization model (Kim 2004) allows the pavement designer to make predictions of Resilient Modulus, Mr, for cohesive subgrades without the need for conducting the test which can be both costly and complex. This approach renders a cost effective way of obtaining one of the most important parameters for employing a mechanistic approach which is also a major prohibition for many developing countries to move closer to the State-of-the-Art. This new synthesis allows for good predictions of global responses as well as transverse stress distribution which is critical for overcoming pavement layer debonding that can reduce pavement life significantly. Considering the results of the analysis compared to ABAQUS 3D Finite Element Models, this new synthesis forms the basis of a good pavement response model which can be used to further a more mechanistic approach for relatively small design agencies.
机译:在过去的几十年中,路面设计方法已经历了哲学的演变,并最终实现了新的假设。随着路面研究人员对路面设计的最新发展做出了更多贡献,路面工程师与先进路面研究之间存在着将路面设计准则纳入其中的鸿沟。在发展中国家,例如南美的圭亚那,以及美国的几个交通,市政和乡镇部门,路面工程师仍然使用美国国家公路和运输官员协会(AASHTO)的路面设计指南(1993)。这份经验性路面设计指南及其以前的版本主要基于从1958年至1960年进行的当时的美国国家公路官员协会(AASHO)道路测试中收集和处理的数据。数据是在特定的环境条件,特定的路基类型,特定的材料以及特定的路面横截面下收集的。继续使用本指南并不能说明材料技术的进步,不同类型和数量的车辆交通,不断变化的气候条件,并且在扩大道路网络方面可能会付出高昂的代价。为解决这一难题,路面研究人员开始着手研究一种更加机械化的方法,并通过国家公路合作研究计划(NCHRP)开展工作,最终于2004年出版了《机械-经验路面设计指南》(MEPDG)。有限元MEPDG中使用的模型基于位移理论。这些理论能够对整体响应做出很好的预测,例如位移,有时还有平面应力,但不能预测横向应力分布。为了预测横向应力分布,基于应力的理论更适合用于配方中。在俄亥俄州立大学,Chyou(1989),Schoeppner(1991)和Butalia(1996)研究了复合层压板基于应力模型的不同版本。 Tu(2007)最初将该模型扩展到对分析路面系统响应具有良好效果。在这项研究工作中,该响应模型得到了进一步扩展,以将材料表征模型合并到刚度矩阵中,以实现更准确的结构响应预测。材料表征模型(Kim 2004)使路面设计人员可以预测粘性土路基的回弹模量,而无需进行既昂贵又复杂的测试。这种方法为获得采用机械方法的最重要参数之一提供了一种经济有效的方法,这也是许多发展中国家接近最新技术的主要禁止。这种新的合成方法可以很好地预测整体响应以及横向应力分布,这对于克服可显着缩短路面寿命的路面脱层至关重要。考虑到与ABAQUS 3D有限元模型相比的分析结果,这种新的合成方法构成了良好的路面响应模型的基础,该模型可用于相对较小的设计机构进一步采用机械方法。

著录项

  • 作者

    Parris, Kadri.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Transportation.;Civil engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号