首页> 外文学位 >Effects of Zeolite Structure and Si/Al Ratio on Adsorption Thermodynamics and Intrinsic Kinetics of Monomolecular Cracking and Dehydrogenation of Alkanes over Bronsted Acid Sites.
【24h】

Effects of Zeolite Structure and Si/Al Ratio on Adsorption Thermodynamics and Intrinsic Kinetics of Monomolecular Cracking and Dehydrogenation of Alkanes over Bronsted Acid Sites.

机译:沸石结构和Si / Al比对布朗斯台德酸性位上烷烃单分子裂解和脱氢吸附热力学和内在动力学的影响。

获取原文
获取原文并翻译 | 示例

摘要

It is well known that the efficacy of acidic zeolite catalysts for the cracking of hydrocarbons originates from the shape and size of the zeolite pores. However, the mechanisms by which changes in pore structure influence cracking kinetics are not well understood or exploited. The aim of this dissertation is to use experiments and simulations to shed light on the ways by which zeolite structure and acid site location affect the apparent and intrinsic kinetics of n-alkane monomolecular cracking and dehydrogenation. In the rate-determining step of these processes, C-C or C-H bonds are cleaved catalytically by Bronsted protons. Thus, the kinetics of monomolecular activation reactions are useful for characterizing the influence of active site structural environment on catalysis.;In Chapter 2, the effects of active site distribution on n-butane monomolecular activation kinetics are investigated for commercial samples of MFI having a range of the Si/Al ratio. Based on UV-visible spectroscopic analyses of (Co,Na)-MFI, it is inferred that, with increasing Al concentration, the fraction of Co---and, by extension, Bronsted protons in H-MFI---located at channel intersections increases relative to the fraction located at channels. Concurrently, the first-order rate coefficients (kapp) for cracking and dehydrogenation, the selectivity to terminal cracking versus central cracking, and the selectivity to dehydrogenation versus cracking increase. The stronger dependence of the selectivity to dehydrogenation on Al content is attributed to a product-like transition state, the stability of which is more sensitive to confinement than the stabilities of cracking transition states, which occur earlier along the reaction coordinate. For terminal cracking and dehydrogenation, the intrinsic activation entropy (DeltaS‡int ) increases with Al content, consistent with the larger dimensions of intersections relative to channels. Surprisingly, the rate of dehydrogenation is inhibited by butene products. Theoretical calculations suggest that this effect originates from the adsorption of isobutene at channel intersections, indicating that dehydrogenation occurs with stronger preference for these locations than does cracking.;In order to analyze the effects of zeolite structure on monomolecular alkane activation reactions, it is necessary to separate the contributions of the adsorption and reaction steps to observed kinetics. A method is developed in Chapter 3 for obtaining the enthalpy and entropy changes for adsorption of n-alkanes from the gas phase onto Bronsted protons (DeltaH ads·H+ and DeltaSads·H+) using configurational-bias Monte Carlo (CBMC) simulations.;In Chapter 4 the effects of zeolite structural confinement on n-butane cracking and dehydrogenation are characterized for zeolites that differ predominately in the size and abundance of cavities. Values of DeltaHads·H+ and DeltaSads·H+ are obtained from CBMC simulations and used to extract intrinsic rates and activation parameters. As DeltaS ads·H+ (a proxy for confinement) becomes more negative, DeltaH ‡int and DeltaS‡int decrease for terminal cracking and dehydrogenation when the channel topology (e.g., straight, sinusoidal) is fixed. This observation, as well as positive values for DeltaS‡int, indicate that the transition states for these reactions resemble the products.;Finally, in Chapter 5 the influence of channel and cage topology on n-alkane adsorption are characterized for zeolites and zeotypes with one-dimensional pore systems. When cages are not present, DeltaHads·H+ and DeltaSads·H+ at fixed pore-limiting diameter (PLD; the diameter of the largest sphere that can traverse the pores) decrease in magnitude as the ratio of the smallest to largest channel diameter decreases and the pore become less circular. The higher entropy of alkanes in non-circular pores is attributed to greater freedom of movement and can cause the free energy to be lower in these environments relative to circular pores. In zeolites that lack cages, the selectivity to adsorption via a central C-C bond vs. a terminal bond exhibits a minimum at PLDs near the length of the alkane. When cages are present, the selectivity to adsorption via a central bond exhibits a minimum with respect to cage size, occurring at a diameter larger than that observed in the absence of cages. This result is attributed to a greater ability of cages to stabilize configurations in which the alkane backbone is oriented perpendicular to the cage wall. (Abstract shortened by ProQuest.).
机译:众所周知,酸性沸石催化剂对烃裂化的功效源于沸石孔的形状和大小。但是,孔结构变化影响开裂动力学的机理尚未得到很好的理解或利用。本文的目的是利用实验和模拟来阐明沸石结构和酸位位置影响正构烷烃单分子裂解和脱氢的表观和内在动力学的方式。在这些过程的速率确定步骤中,C-C或C-H键被布朗斯台德质子催化裂解。因此,单分子活化反应的动力学对于表征活性位点结构环境对催化的影响是有用的。在第二章中,研究了活性位点分布对正丁烷单分子活化动力学的影响。的Si / Al比。基于(Co,Na)-MFI的紫外可见光谱分析,可以推断出,随着Al浓度的增加,Co-的份额以及H-MFI中的布朗斯台德质子扩展到通道相交相对于通道处的分数增加。同时,裂化和脱氢的一级速率系数(kapp),末端裂化对中心裂化的选择性以及脱氢对裂化的选择性增加。脱氢选择性对Al含量的依赖性更大,这归因于产物状的过渡态,其稳定性比起沿反应坐标更早发生的裂化过渡态的稳定性,对局限性更为敏感。对于末端裂化和脱氢,本征活化熵(DeltaS‡int)随着Al含量的增加而增加,这与相交通道相对于通道的较大尺寸一致。令人惊讶地,丁烯产物抑制了脱氢速率。理论计算表明,这种作用源于通道交叉处异丁烯的吸附,这表明脱氢作用比裂化作用更优先发生在这些位置。为了分析沸石结构对单分子烷烃活化反应的影响,有必要分离吸附和反应步骤对观察到的动力学的贡献。在第3章中开发了一种方法,该方法使用构型偏向蒙特卡洛(CBMC)模拟获得了气相吸附正构烷烃到布朗斯台德质子上的焓和熵的变化(DeltaH ads·H +和DeltaSads·H +)。第四章研究了沸石结构限制对正丁烷裂化和脱氢的影响,这些沸石主要在型腔的大小和丰度方面存在差异。从CBMC模拟获得DeltaHads·H +和DeltaSads·H +的值,并用于提取固有速率和激活参数。随着DeltaS ads·H +(限制的代名词)变得越来越负,当通道拓扑(例如,笔直,正弦波)固定时,由于末端开裂和脱氢,DeltaH‡int和DeltaS‡int减少。该观察结果以及DeltaS‡int的正值表明这些反应的过渡态与产物相似。最后,在第5章中,通过分子筛和分子筛表征了通道和笼形拓扑结构对正构烷烃吸附的影响。一维孔隙系统。当不存在笼子时,随着最小通道直径与最大通道直径的比值减小,并且在最大孔直径限制下,固定孔径限制直径(PLD;可以穿过孔的最大球体的直径)上的DeltaHads·H +和DeltaSads·H +孔变得不那么圆。非圆形孔中烷烃的较高熵归因于更大的运动自由度,并且在这些环境中相对于圆形孔可导致自由能较低。在没有笼子的沸石中,通过中心C-C键与末端键的吸附选择性在接近烷烃长度的PLD处表现出最小。当存在笼子时,相对于笼子尺寸,通过中心键的吸附选择性表现出最小,其直径大于不存在笼子时观察到的直径。该结果归因于保持架具有更高的稳定构架的能力,在该构型中,烷烃主链垂直于保持架壁定向。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Janda, Amber Leigh.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Chemical engineering.;Energy.;Inorganic chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号