首页> 外文学位 >From Nano-precipitates to Macroscale Composites: How Inclusion-Matrix Interactions Influence the Behaviors of Shape Memory Alloys and Structures.
【24h】

From Nano-precipitates to Macroscale Composites: How Inclusion-Matrix Interactions Influence the Behaviors of Shape Memory Alloys and Structures.

机译:从纳米沉淀到大型复合材料:夹杂物-基质相互作用如何影响形状记忆合金和结构的行为。

获取原文
获取原文并翻译 | 示例

摘要

Shape memory alloys (SMAs) and composites present multiple new challenges in terms of understanding, prediction, design, and optimization of inclusion effects. This dissertation covers three specific projects on inclusion effects across the spatial length scales from nm to cm. The 1st project simulates the TRansformation-Induced Dislocation (TRID) effect in single crystal NiTi micropillar compression, and compares the simulation results with scanning TEM observations. The close correlation between experimental and numerical results provides further mechanistic insight into this intriguing phenomenon. The 2nd project focuses on the link in Ni-Ti-Hf high temperature SMAs between aging-induced H-phase precipitates and thermo-mechanical properties. By analyzing the chemical and mechanical effects of the H-phase, a qualitative explanation of the dependence of DSC behavior on aging time is proposed. A microstructural finite element (MFE) model that incorporates the chemical and diffusion kinetic effects was able to capture the nucleation and growth process of martensite and to provide insights into the origin of optimal-aging behaviors. The 3rd project studies the behavior of NiTi/Al composites fabricated through an emerging joining technique -- Ultrasonic Additive Manufacturing (UAM). A combined experimental-simulation approach is used to develop and validate the MFE model, enabling it to closely reproduce the macroscopic strain vs. temperature cyclic response, including initial transient effects in the first cycle. The simulation identified crystallographic orientation of the NiTi fiber for optimal performance, and suggests that the UAM process may reduce hysteresis in embedded SMA wires.
机译:形状记忆合金(SMA)和复合材料在理解,预测,设计和优化夹杂效应方面提出了多个新挑战。本文涵盖了从纳米到厘米的空间长度尺度上的三个关于夹杂效应的具体项目。第一个项目模拟单晶NiTi微柱压缩中的形变诱导位错(TRID)效应,并将模拟结果与扫描TEM观察结果进行比较。实验结果与数值结果之间的密切相关性为这种有趣现象提供了进一步的机械洞察力。第二个项目着重于Ni-Ti-Hf高温SMA中,时效引起的H相析出物与热机械性能之间的联系。通过分析H相的化学和机械作用,提出了DSC行为对时效时间的依赖性的定性解释。结合化学和扩散动力学效应的微结构有限元(MFE)模型能够捕获马氏体的形核和生长过程,并提供对最佳时效行为起源的见解。第三个项目研究了通过新兴的连接技术-超声增材制造(UAM)制造的NiTi / Al复合材料的行为。结合了实验模拟方法来开发和验证MFE模型,从而使其能够密切再现宏观应变与温度的循环响应,包括在第一个循环中的初始瞬态效应。该模拟确定了NiTi纤维的晶体学取向以获得最佳性能,并表明UAM工艺可以减少嵌入SMA线材中的磁滞现象。

著录项

  • 作者

    Chen, Xiang.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号