首页> 外文学位 >Stress, on the rocks: Thermally induced stresses in rocks and microstructures on airless bodies, implications for breakdown.
【24h】

Stress, on the rocks: Thermally induced stresses in rocks and microstructures on airless bodies, implications for breakdown.

机译:岩石上的应力:岩石和无气物体上的微结构中的热诱导应力,可能会导致击穿。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates the role of thermomechanical processes in the production of regolith on airless body surfaces. Thermally induced breakdown may provide a significant contribution to their surface evolution, by breaking down rocks and degrading craters. In Chapter 1, we use the traditional terrestrial methodology of evaluating the efficacy of this process by modeling the rate of surface temperature change (dT/dt) on various airless surfaces, using a damage threshold of 2 K/min. We find that the magnitude of dT/dt values is primarily controlled by sunrise/set durations on quickly rotating bodies, such as Vesta, and by distance to the sun on slowly rotating bodies, such as Mercury. The strongest rates of temperature change occur on slopes normal to the sun when a sunrise or sunset occurs, either naturally or because of daytime shadowing. We find, however, that high dT/dt values are not always correlated with high temperature gradients within the surface. This adds to the ambiguity of the poorly understood damage threshold, emphasizes the need further research on this topic that goes beyond the simple 2 K/min criterion. We further investigate this shortcoming in the terrestrial literature in Chapter two by modeling stresses induced by diurnal temperature variations at the mineral grain scale on these bodies. We find that the resulting stresses are controlled by mismatches in material properties between adjacent mineral grains. Peak stresses (on the order of 100s of MPa) are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also find that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investigating microcrack propagation. Although these results provide strong evidence for the significance of thermomechanical processes, more work is needed to quantify crack propagation and rock breakdown rates in order to understand their overall contribution to surface evolution on these bodies. In Chapter 4, we investigate macroscopic scale effects on thermally induced stress fields in boulders of varying sizes and find that macroscopic thermal gradients may play a role in crack propagation within boulder interiors.
机译:本论文研究了热机械过程在无气态身体表面硬石膏生产中的作用。热致击穿可能会通过击碎岩石并使火山口降解而对其表面演化做出重大贡献。在第1章中,我们使用传统的地面方法来评估此过程的效率,方法是使用2 K / min的损坏阈值对各种无气表面上的表面温度变化率(dT / dt)进行建模。我们发现,dT / dt值的大小主要受快速旋转的物体(例如Vesta)上的日出/设定持续时间控制,以及缓慢旋转的物体(例如Mercury)上与太阳的距离控制。当自然发生或由于白天阴影而出现日出或日落时,最强的温度变化发生在垂直于太阳的斜坡上。但是,我们发现,高dT / dt值并不总是与表面内的高温梯度相关。这增加了人们对损坏阈值的了解不明确的模棱两可之处,强调了需要对这一主题进行进一步研究,而不仅仅是简单的2 K / min标准。我们在第二章中通过对由这些矿体上矿物颗粒尺度上的昼夜温度变化引起的应力进行建模来进一步研究地面文献中的这一缺陷。我们发现,所产生的应力受相邻矿物晶粒之间材料性能的不匹配所控制。峰值应力(约100s MPa)由矿物成分的热膨胀系数和杨氏模量控制,微观结构内的平均应力由每种矿物的相对体积决定。应力的放大发生在相邻矿物晶粒之间的表面平行边界以及孔隙空间的尖端。我们还发现,微观的时空表面温度梯度与高应力不相关,这使其不适合用来研究微裂纹的传播。尽管这些结果为热机械过程的重要性提供了有力的证据,但是需要更多的工作来量化裂纹扩展和岩石破裂速率,以了解它们对这些物体表面演化的总体贡献。在第4章中,我们研究了宏观尺度对大小不同的巨石热致应力场的影响,并发现宏观的热梯度可能在巨石内部的裂纹扩展中起作用。

著录项

  • 作者

    Molaro, Jamie.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Planetology.;Astronomy.;Geology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号