首页> 外文学位 >Internal tides in an island coastal zone: An observational and modeling study of O'ahu, Hawai'i
【24h】

Internal tides in an island coastal zone: An observational and modeling study of O'ahu, Hawai'i

机译:岛屿沿海地区的内潮:夏威夷瓦胡岛的观测和模型研究

获取原文
获取原文并翻译 | 示例

摘要

The Hawai'i Ocean Mixing Experiment established the Hawaiian Ridge as a site of strong internal tide (IT) generation, but it did not resolve the propagation of ITs into the island nearshore regions. Ka'ena Ridge, off the northwest corner of the island of O'ahu, is known as one of the strongest IT generation sites along the Hawaiian chain, and the ridge offshore of Makapu'u Point on the southeast corner of O'ahu also generates ITs, exposing the island to locally as well as remotely generated ITs. The behavior of these ITs in nearshore O'ahu is characterized using observations from sites around the island and with regional numerical models.;The diurnal IT generated over Ka'ena Ridge is predicted by a high-resolution, primitive equation model to propagate clockwise around O'ahu in an island-trapped fashion. This is in contrast to the semidiurnal IT which, while much stronger than the diurnal, primarily propagates away from the Hawaiian Island chain. Observations support the diurnal island-trapped behavior as predicted in the model. The trapped behavior provides the east shore of the island, which is otherwise sheltered from locally generated ITs, with its dominant source of IT variability, and it may retain a higher proportion of the diurnal IT energy for dissipation in the island nearshore compared to the semidiurnal IT energy. Due to the role of the Coriolis acceleration in wave trapping, island-trapped waves have mostly been studied at subinertial frequencies, for which perfect trapping is possible. Around O'ahu, the diurnal tide is superintertial (∼1.4f), making this an example of the understudied phenomenon of superinertial internal waves partially trapped by rotation. These results indicate that rotational effects on the behavior of ITs in coastal systems should be considered even at frequencies above the inertial.;Hanauma Bay is located just west of the IT generation site offshore of Makapu'u Point. Large semidiurnal ITs enter the bay, dominating temperature fluctuations in the deeper bay (> 15 m) but affecting temperatures in the bay as shallow as 5 m. During summer months when stratification is high, the semidiurnal IT is observed to cause consistent temperature drops of 1 °C (associated with a 50 m displacement) and occasional temperature drops up to 2.7 °C (100 m displacement) near the bay mouth at 20 m depth. Semidiurnal band currents are similarly strong in spring and summer, but spring temperature fluctuations are small due to low stratification. These results highlight the importance of understanding ITs and the role of stratification in the physical variability of nearshore ecosystems, particularly close to IT generation sites.;In Mamala Bay, on the south shore of O'ahu, the semidiurnal IT is observed to break and form internal tidal bores as large as 60 m in height at the bottom near the 500 m isobath. These bores are associated with enhanced turbulent dissipation and mixing. Near the 90 m isobath, frequent internal bores not associated with a tidal phase are observed at the bottom. While the temperature drops caused by the bores indicate displacements as large as 70 m, the duration of the decreased temperatures is generally less than 1 hour. Near the 300 m isobath, a high frequency band of internal waves (6--40 cycles per day) exhibit elevated energy near the slope. This elevated energy is not observed at the 90 m or 500 m isobaths and likely represents the concentration of energy at those frequencies by local critical slope interactions.;ITs shoaling at ocean boundaries provide significant contributions to ocean mixing and dissipation, making them an important part of understanding and characterizing ocean stratification and the ocean energy budget. Additionally, shoaling ITs can affect nearshore ecosystems by transporting water from depth into shallower habitats, giving ecological motivation for studying their behavior in nearshore systems. The findings of this work have implications for local physics and O'ahu's nearshore ecosystems, and they give insight into mechanics that are likely to be important in nearshore locations worldwide.
机译:夏威夷大洋混合实验将夏威夷山脊定为产生强烈内潮(IT)的地点,但它并没有解决IT扩散到岛屿近岸地区的问题。位于瓦胡岛西北角的卡纳岭(Ka'ena Ridge)被称为夏威夷链条上最强大的IT发电基地之一,而瓦胡岛东南角Makapu'u Point的洋脊也被称为生成IT,将岛屿暴露给本地以及远程生成的IT。这些信息技术在瓦胡岛近岸的行为通过岛屿周围站点的观测资料和区域数值模型来表征。Ka'ena脊上产生的昼夜信息技术是由高分辨率的原始方程模型预测的,并沿顺时针方向传播瓦胡岛(O'ahu)被困在岛上。这与半日制IT相反,半日制IT比日制IT强得多,但主要从夏威夷岛链传播出去。观测结果支持该模型所预测的昼夜岛困行为。受困的行为为岛屿的东海岸提供了IT变异性的主要来源,而该岛却不受本地产生的IT的庇护,并且与半昼夜相比,它可以保留更高比例的昼夜IT能量以在近海岛屿中消散。 IT能源。由于科里奥利加速度在陷波中的作用,岛状陷波主要是在亚惯性频率上进行研究的,因此对于完美陷波是可能的。在瓦胡岛周围,昼夜潮是超空间的(〜1.4f),这使超惯性内波被旋转部分捕获的现象尚未得到充分研究。这些结果表明,即使在惯性以上的频率下,也应考虑对沿海系统中IT行为的旋转影响。;花沼湾位于Makapu'u Point海上IT发电场的西边。大型半日间IT进入海湾,控制了较深海湾中的温度波动(> 15 m),但影响了浅至5 m的海湾温度。在夏季,当分层较高时,观察到半日IT导致温度持续下降1°C(与50 m位移相关),偶尔在20度的湾口附近温度下降高达2.7°C(100 m位移)。米深。春季和夏季,半昼间带电流同样很强,但由于分层低,春季温度波动较小。这些结果凸显了理解信息技术的重要性以及分层在近海生态系统(尤其是靠近信息技术产生地点)的物理可变性中的作用。在瓦胡岛南岸的马马拉湾,观察到半日信息技术会破裂并在等深线500 m附近的底部形成高达60 m的内部潮汐孔。这些孔与湍流消散和混合的增强有关。在等深线90 m附近,底部观察到频繁的与潮汐阶段无关的内部钻孔。虽然由孔引起的温度下降表明位移高达70 m,但降低温度的持续时间通常少于1小时。在等深线300 m附近,内波的高频带(每天6至40个循环)在斜坡附近显示出较高的能量。在90 m或500 m等深处未观察到这种升高的能量,并且可能通过局部临界坡度相互作用表示了这些频率处的能量集中。;在海洋边界处进行暗沙活动对海洋的混合和消散起了重要作用,使其成为重要的组成部分。了解和表征海洋分层和海洋能源预算。此外,浅埋的IT可以通过将水从深处输送到较浅的栖息地来影响近岸的生态系统,从而为研究其在近岸系统中的行为提供了生态动力。这项工作的发现对当地物理学和瓦胡岛的近岸生态系统具有重要意义,并且使他们深入了解了在全球近岸地区可能很重要的力学。

著录项

  • 作者

    Smith, Katharine Anne.;

  • 作者单位

    University of Hawai'i at Manoa.;

  • 授予单位 University of Hawai'i at Manoa.;
  • 学科 Physical oceanography.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号