首页> 外文学位 >Stability and deactivation regimes of a trimetallic platinum-rhenium-molybdenum water gas shift catalyst for on-site hydrogen generation.
【24h】

Stability and deactivation regimes of a trimetallic platinum-rhenium-molybdenum water gas shift catalyst for on-site hydrogen generation.

机译:用于现场制氢的三金属铂-hen-钼水煤气变换催化剂的稳定性和失活状态。

获取原文
获取原文并翻译 | 示例

摘要

Supply and geopolitical issues associated with crude oil based energy have prompted the need for alternative sources of energy. Polymer Electrolyte Membrane Fuel Cells (PEMFC) have been proposed as an efficient alternative clean source of energy. The hydrogen required to fuel the PEMFC will eventually come from renewable sources such as wind and solar power. In the interim until these technologies mature, hydrogen will be generated from fossil or biologically derived hydrocarbon fuels using a process collectively called fuel processing.;The water gas shift reaction is a critical step in the conversion of hydrocarbon fuel into PEMFC quality hydrogen. The nature of on-site hydrogen generation requires precious metal based catalysts and catalyst cost is a major issue. Recent research has discovered polymetallic combinations of platinum-rhenium and platinum-rhenium-molybdenum to provide higher activity for water gas shift than monometallic precious metal catalysts. While these catalysts appear promising for water gas shift, virtually no work has studied the stability of these catalysts in realistic conditions.;My work studied the deactivation of a trimetallic Pt/ReMo/ZrO2-containing water gas shift catalyst in realistic reaction conditions. A parametric study of catalyst stability revealed that while this catalyst is very stable above 300°C, the catalyst becomes increasing more unstable as it is operated below 300°C. Below 300°C, the stability of the catalyst is sensitive to synthesis gas composition, where higher carbon monoxide concentrations or higher ratios of steam to hydrogen result in more rapid catalyst decay. The mechanism for deactivation is fully reversible by heating in a reductive gas, which indicates the mechanism involves oxidation of the catalyst surface. Experimental observations are consistent with higher carbon monoxide coverage on platinum occurring below 300°C reduces the availability of activated surface hydrogen required to maintain the active state of the rhenium promoter, which is oxidized and rendered inactive by steam contained in the feed synthesis gas. Polymetallic formulations of Pt/Re and Pt/ReMo are inherently unstable for operation below 300°C and are not a realistic pathway for higher activity catalysts for low-temperature water gas shift.;As part of my investigation, the water gas shift and deactivation kinetics for the Pt/ReMo/ZrO2-containing catalyst were measured. This was combined with transport theory to create a computational model of the catalytic reactor capable of predicting changes in concentration and temperature as a function of both time and space. This reactor model was combined with water gas shift experiments to study the interaction between catalyst deactivation and reactor design. This work discovered that when the CO conversion is high, axial heat migration is significant enough to increase the reaction temperature in the front of the catalyst bed, which will slow the deactivation of the trimetallic catalyst.;As a second part of my work, computational reactor modeling was applied to the mechanism by which diesel fuel decomposes to synthesis gas during autothermal reforming. A simplified reaction mechanism was developed for tetradecane (C 14H30) to gain insight into the reaction sequences that govern liquid fuel reforming as well as the probable pathways for coke formation. This analysis determined the tetradecane reaction sequence starts with a combination of oxidation and cracking reactions. Unexpectedly, the reforming of tetradecane and the hydrocarbons that result from the cracking reaction are not dominant reactions. What reforming does occur is limited to small hydrocarbons produced during the reaction sequence. In lieu of steam reforming, the hydrogen yield observed in experiments is primarily the result of partial oxidation reactions and, to a lesser degree, the water gas shift reaction. While the catalyst serves to initiate the reaction mechanism, a mixture of gas phase and surface reactions occur throughout the reactor.
机译:与原油能源有关的供应和地缘政治问题促使人们需要替代能源。聚合物电解质膜燃料电池(PEMFC)已被提出作为一种有效的替代清洁能源。 PEMFC所需的氢气最终将来自风能和太阳能等可再生资源。在这些技术成熟之前,将使用化石燃料或生物衍生的碳氢化合物燃料统称为燃料处理过程产生氢。水煤气变换反应是将碳氢化合物燃料转化为PEMFC优质氢的关键步骤。现场产生氢气的性质需要贵金属基催化剂,并且催化剂成本是主要问题。最近的研究发现铂-and和铂-hen-钼的多金属组合比单金属贵金属催化剂具有更高的水煤气变换活性。尽管这些催化剂对水煤气变换似乎很有希望,但几乎没有工作研究在现实条件下这些催化剂的稳定性。我的工作研究了在实际反应条件下含三金属Pt / ReMo / ZrO2的水煤气变换催化剂的失活。催化剂稳定性的参数研究表明,尽管该催化剂在300°C以上非常稳定,但在300°C以下操作时,催化剂变得更加不稳定。在低于300°C时,催化剂的稳定性对合成气成分敏感,其中较高的一氧化碳浓度或较高的蒸汽与氢气比会导致催化剂更快地腐烂。通过在还原性气体中加热,失活机理是完全可逆的,这表明该机理涉及催化剂表面的氧化。实验观察结果与低于300°C的铂对一氧化碳的较高覆盖率相一致,这降低了维持surface促进剂活性状态所需的活化表面氢的可用性,en促进剂被进料合成气中的蒸汽氧化并使其变为惰性。 Pt / Re和Pt / ReMo的多金属配方在300°C以下的操作中固有地不稳定,并且不是用于高温水煤气变换的高活性催化剂的现实途径。;作为我研究的一部分,水煤气变换和失活测量了含Pt / ReMo / ZrO2的催化剂的动力学。这与运输理论相结合,创建了催化反应器的计算模型,该模型能够预测浓度和温度随时间和空间的变化。该反应器模型与水煤气变换实验相结合,以研究催化剂失活与反应器设计之间的相互作用。这项工作发现,当CO转化率很高时,轴向热迁移显着增加,足以提高催化剂床前的反应温度,这将减缓三金属催化剂的失活。将反应堆模型应用于自热重整过程中柴油分解为合成气的机理。为十四烷(C 14H30)开发了一种简化的反应机理,以深入了解控制液体燃料重整的反应顺序以及形成焦炭的可能途径。该分析确定了十四烷反应顺序始于氧化和裂化反应的结合。出乎意料的是,由裂化反应产生的十四烷和烃的重整不是主要反应。发生的重整仅限于在反应顺序中产生的小烃。代替蒸汽重整,在实验中观察到的氢气产率主要是部分氧化反应的结果,而在较小程度上是水煤气变换反应的结果。催化剂起引发反应机理的作用时,气相和表面反应的混合物在整个反应器中发生。

著录项

  • 作者

    Dorazio, Lucas.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Alternative Energy.;Engineering Chemical.;Engineering Environmental.
  • 学位 D.E.S.
  • 年度 2009
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号