首页> 外文学位 >Integration of local positioning system & strapdown inertial navigation system for hand-held tool tracking.
【24h】

Integration of local positioning system & strapdown inertial navigation system for hand-held tool tracking.

机译:集成了本地定位系统和捷联惯性导航系统,可进行手持式工具跟踪。

获取原文
获取原文并翻译 | 示例

摘要

This research concerns the development of a smart sensory system for tracking a hand-held moving device to millimeter accuracy, for slow or nearly static applications over extended periods of time. Since different operators in different applications may use the system, the proposed design should provide the accurate position, orientation, and velocity of the object without relying on the knowledge of its operation and environment, and based purely on the motion that the object experiences. This thesis proposes the design of the integration a low-cost Local Positioning System (LPS) and a low-cost StrapDown Inertial Navigation System (SDINS) with the association of the modified EKF to determine 3D position and 3D orientation of a hand-held tool within a required accuracy.;As a result of this arrangement, a wide circular field of view is initiated with less loss of line-of-sight. However, the calibration is more difficult than a monocular or stereo vision system. The calibration of the multi-camera vision system includes the precise camera modeling, single camera calibration for each camera, stereo camera calibration for each two neighboring cameras, defining a unique world coordinate system, and finding the transformation from each camera frame to the world coordinate system. Aside from the calibration procedure, digital image processing is required to be applied into the images captured by all four cameras in order to localize the tool tip. In this research, the digital image processing includes image enhancement, edge detection, boundary detection, and morphologic operations. After detecting the tool tip in each image captured by each camera, triangulation procedure and optimization algorithm are applied in order to find its 3D position with respect to the known navigation frame.;In the SDINS, inertial sensors are mounted rigidly and directly to the body of the tracking object and the inertial measurements are transformed computationally to the known navigation frame. Usually, three gyros and three accelerometers, or a three-axis gyro and a three-axis accelerometer are used for implementing SDINS. The inertial sensors are typically integrated in an inertial measurement unit (IMU). IMUs commonly suffer from bias drift, scale-factor error owing to nonlinearity and temperature changes, and misalignment as a result of minor manufacturing defects. Since all these errors lead to SDINS drift in position and orientation, a precise calibration procedure is required to compensate for these errors.;The precision of the SDINS depends not only on the accuracy of calibration parameters but also on the common motion-dependent errors. The common motion-dependent errors refer to the errors caused by vibration, coning motion, sculling, and rotational motion. Since inertial sensors provide the full range of heading changes, turn rates, and applied forces that the object is experiencing along its movement, accurate 3D kinematics equations are developed to compensate for the common motion-dependent errors. Therefore, finding the complete knowledge of the motion and orientation of the tool tip requires significant computational complexity and challenges relating to resolution of specific forces, attitude computation, gravity compensation, and corrections for common motion-dependent errors.;In this research, the specific configuration for setting up the multi-camera vision system is proposed to reduce the loss of line of sight as much as possible. The number of cameras, the position of the cameras with respect to each other, and the position and the orientation of the cameras with respect to the center of the world coordinate system are the crucial characteristics in this configuration. The proposed multi-camera vision system is implemented by employing four CCD cameras which are fixed in the navigation frame and their lenses placed on semicircle. All cameras are connected to a PC through the frame grabber, which includes four parallel video channels and is able to capture images from four cameras simultaneously.;The Kalman filter technique is a powerful method for improving the output estimation and reducing the effect of the sensor drift. In this research, the modified EKF is proposed to reduce the error of position estimation. The proposed multi-camera vision system data with cooperation of the modified EKF assists the SDINS to deal with the drift problem. This configuration guarantees the real-time position and orientation tracking of the instrument. As a result of the proposed Kalman filter, the effect of the gravitational force in the state-space model will be removed and the error which results from inaccurate gravitational force is eliminated. In addition, the resulting position is smooth and ripple-free. (Abstract shortened by UMI.)
机译:这项研究涉及智能传感系统的开发,该智能传感系统可跟踪手持移动设备达到毫米精度,以便在较长的时间内缓慢或接近静态地进行应用。由于在不同应用程序中的不同操作员可能会使用该系统,因此所提出的设计应提供对象的准确位置,方向和速度,而不必依赖于其操作和环境的知识,而应完全基于对象所经历的运动。本文提出了一种集成低成本低成本定位系统(LPS)和低成本捷联惯性导航系统(SDINS)的设计,并结合了改进的EKF来确定手持工具的3D位置和3D方向在所需的精度内。;由于这种布置,可以在不损失视线的情况下启动宽广的圆形视场。但是,比单目或立体视觉系统更难校准。多摄像机视觉系统的校准包括精确的摄像机建模,每台摄像机的单摄像机校准,每两台相邻摄像机的立体摄像机校准,定义唯一的世界坐标系以及查找从每个摄像机帧到世界坐标的转换系统。除了校准程序外,还需要对所有四个摄像机捕获的图像进行数字图像处理,以定位工具提示。在这项研究中,数字图像处理包括图像增强,边缘检测,边界检测和形态学运算。在检测到每个摄像头捕获的每个图像中的工具提示之后,应用三角剖分程序和优化算法,以找到其相对于已知导航框架的3D位置。;在SDINS中,惯性传感器被刚性且直接地安装在车身上跟踪对象的位置和惯性测量值通过计算转换为已知的导航框架。通常,三个陀螺仪和三个加速度计,或三轴陀螺仪和三轴加速度计用于实现SDINS。惯性传感器通常集成在惯性测量单元(IMU)中。 IMU通常会遭受偏置漂移,归因于非线性和温度变化的比例因子误差,以及由于较小的制造缺陷而导致的未对准。由于所有这些误差都会导致SDINS的位置和方向发生漂移,因此需要精确的校准程序来补偿这些误差。SDINS的精度不仅取决于校准参数的准确性,而且取决于与运动有关的常见误差。常见的与运动有关的误差是指由振动,圆锥运动,划桨和旋转运动引起的误差。由于惯性传感器提供了对象沿其运动所经历的全方位航向变化,转弯速率和作用力,因此开发了精确的3D运动学方程式来补偿常见的与运动有关的误差。因此,要想获得有关刀尖运动和方向的完整知识,就需要大量的计算复杂性和与特定力的分辨率,姿态计算,重力补偿以及对常见的与运动有关的误差的校正有关的挑战。提出了用于设置多摄像机视觉系统的配置,以尽可能减少视线的损失。摄像机的数量,摄像机相对于彼此的位置以及摄像机相对于世界坐标系中心的位置和方向是此配置中的关键特性。所提出的多摄像机视觉系统是通过使用四个固定在导航框架中的CCD摄像机并将其镜头放置在半圆上来实现的。所有摄像机都通过抓帧器连接到PC,该抓帧器包括四个并行视频通道,并且能够同时捕获来自四个摄像机的图像。卡尔曼滤波技术是一种强大的方法,可以改善输出估计并降低传感器的影响漂移。在这项研究中,提出了改进的EKF以减少位置估计的误差。拟议的多摄像机视觉系统数据与改进的EKF的协作有助于SDINS处理漂移问题。这种配置保证了仪器的实时位置和方向跟踪。由于提出了卡尔曼滤波器,将消除状态空间模型中的重力影响,并消除了由于不正确的重力导致的误差。另外,所得到的位置是平滑的并且没有波纹。 (摘要由UMI缩短。)

著录项

  • 作者

    Parnian, Neda.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号