首页> 外文学位 >Analysis of atmospheric and cryospheric signatures preserved as dissolved organic matter in ancient and modern ice cores using ultahigh resolution FTICR mass spectrometry.
【24h】

Analysis of atmospheric and cryospheric signatures preserved as dissolved organic matter in ancient and modern ice cores using ultahigh resolution FTICR mass spectrometry.

机译:使用超高分辨率FTICR质谱仪分析古代和现代冰芯中保留为溶解有机物的大气和冰冻圈标志。

获取原文
获取原文并翻译 | 示例

摘要

Historically, it has been an analytical challenge to detect and identify the organic components present in ice cores, due to the low abundance of organic carbon. Here, we used ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry, coupled with electrospray ionization, in order to detect and characterize the small amounts of organic matter in ice cores. We successfully identified molecular formulas and bulk structural properties of organic matter in both modern and ancient ice core and glacial samples from Wyoming, Greenland, and Antarctica. In addition, we were able to determine sources of DOM in our ice cores through data comparisons to recently reported studies of DOM derived from atmospheric aerosols (Mazzoleni et al., 2012), microbial and photochemical processing (Antony et al., in prep a), and oxidation chemistry (Waggoner et al., 2015). These source classifications allowed us to identify atmospheric signatures related to anthropogenic emissions of SOx compounds in post-industrial Greenland ice core samples. We also detected atmospheric signatures in Fremont and WAIS Divide samples related to the volcanic emissions of black carbon-like material resulting from the 1883 eruption of Mt. Krakatoa. Ancient Vostok ice cores reveal potential long-term oxidation chemistry occurring in the ice, as well as influences from climatic signatures related to biomass burning events. Our experimental results provide the first investigation of the sources and transformations of DOM preserved in ice, as they relate to the Industrial Revolution, volcanism, and global climate.
机译:从历史上看,由于有机碳含量低,检测和识别冰芯中存在的有机成分一直是分析难题。在这里,我们使用超高分辨率傅里叶变换离子回旋共振质谱,结合电喷雾电离,以检测和表征冰芯中的少量有机物。我们成功地确定了怀俄明州,格陵兰岛和南极洲的现代和古代冰芯和冰川样品中有机物的分子式和整体结构特性。此外,我们还可以通过与最近报道的来自大气气溶胶(Mazzoleni等,2012),微生物和光化学加工(Antony等,准备中)的DOM的数据比较,来确定冰芯中的DOM来源。 )和氧化化学(Waggoner et al。,2015)。这些来源分类使我们能够识别与工业后格陵兰冰芯样品中人为排放SOx化合物有关的大气特征。我们还检测了Fremont和WAIS Divide样本中的大气特征,这些样本与1883年Mt火山爆发导致的类似于黑碳的物质的火山排放有关。喀拉喀托。古代的沃斯托克冰芯揭示了冰中潜在的长期氧化化学作用,以及与生物质燃烧事件有关的气候特征的影响。我们的实验结果首次调查了冰中保存的DOM的来源和转化,因为它们与工业革命,火山活动和全球气候有关。

著录项

  • 作者

    Catanzano, Victoria Lynn.;

  • 作者单位

    Villanova University.;

  • 授予单位 Villanova University.;
  • 学科 Analytical chemistry.
  • 学位 M.S.
  • 年度 2016
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号