首页> 外文学位 >Applications of three-dimensional modeling in electromagnetic exploration.
【24h】

Applications of three-dimensional modeling in electromagnetic exploration.

机译:三维建模在电磁勘探中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Numerical modeling is used in geophysical exploration to understand physical mechanisms of a geophysical method, compare different exploration techniques and interpret field data. Exploring the physics of a geophysical response enhances the geophysicist's insight, resulting in better survey design and interpretation. Comparing exploration methods numerically can eliminate the use of a technique that cannot resolve the exploration target. Interpreting field data to determine the structure of the earth is the ultimate goal of the exploration geophysicist. Applications of three-dimensional (3-D) electromagnetic (EM) modeling in mining, geothermal and environmental exploration demonstrate the importance of numerical modeling as an geophysical tool.; Detection of a confined, conductive target with a vertical electric source (VES) can be an effective technique if properly used. The vertical magnetic field response is due solely to multi-dimensional structures, and current channeling is the dominant mechanism. A VES is deployed in a borehole, hence the orientation of the hole is critical to the response. A deviation of more than a degree from the vertical can result in a host response that overwhelms the target response. Only the in-phase response at low frequencies can be corrected to a purely vertical response.; The geothermal system studied here consists of a near-surface clay cap and a deep reservoir. The magnetotelluric (MT), controlled-source audio magnetotelluric (CSAMT), long-offset time-domain electromagnetic (LOTEM) and central-loop transient electromagnetic (TEM) methods are appraised for their ability to detect the reservoir and delineate the cap. The reservoir anomaly is supported by boundary charges and therefore is detectable only with deep sounding electric field measurement--MT and LOTEM. The cap is easily delineated with all techniques.; For interpretation I developed an approximate 3-D inversion that refines a 1-D interpretation by removing lateral distortions. An iterative inverse procedure invokes EM reciprocity while operating on a localized portion of the survey area thereby greatly reducing the computational requirements. The scheme is illustrated with three synthetic data sets representative of problems in environmental geophysics.
机译:在地球物理勘探中使用数值建模来了解地球物理方法的物理机制,比较不同的勘探技术并解释现场数据。探索地球物理响应的物理原理可以增强地球物理专家的洞察力,从而更好地进行勘测设计和解释。在数值上比较勘探方法可以消除无法解决勘探目标的技术的使用。解释现场数据以确定地球结构是勘探地球物理学家的最终目标。三维(3-D)电磁(EM)建模在采矿,地热和环境勘探中的应用证明了数值建模作为地球物理工具的重要性。如果使用得当,使用垂直电源(VES)检测受限的导电目标可能是一种有效的技术。垂直磁场响应仅归因于多维结构,电流通道是主要机制。 VES部署在井眼中,因此井眼的方向对于响应至关重要。与垂直方向的偏差超过一个度会导致宿主响应淹没目标响应。仅低频的同相响应可被校正为纯垂直响应。这里研究的地热系统由一个近地表的粘土盖和一个深层的储层组成。评估了大地电磁(MT),受控源音频大地电磁(CSAMT),长偏移时域电磁(LOTEM)和中心回路瞬变电磁(TEM)方法的能力,以检测油藏并描绘出盖的轮廓。储层异常由边界电荷支持,因此只有在深层电场测量(MT和LOTEM)中才能检测到。所有技术都很容易划定盖子。为了进行解释,我开发了一种近似的3-D反演,通过消除横向失真来完善1-D解释。迭代逆过程在对调查区域的局部区域进行操作时调用EM互惠性,从而大大减少了计算需求。用代表环境地球物理学问题的三个综合数据集说明了该方案。

著录项

  • 作者

    Pellerin, Louise Donna.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Geophysics.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号