首页> 外文学位 >Middle atmosphere ozone response to solar UV variations over solar rotation and solar cycle periods.
【24h】

Middle atmosphere ozone response to solar UV variations over solar rotation and solar cycle periods.

机译:在太阳旋转和太阳周期期间,中层大气臭氧对太阳紫外线变化的响应。

获取原文
获取原文并翻译 | 示例

摘要

A one-dimensional photochemical-radiative time-dependent model with vertical diffusion is developed to investigate the response of ozone in the middle atmosphere to solar UV irradiance variations over 27-day solar rotation periods. The results of the 1D model show that ozone decreases at altitudes of 60-80 km with increasing solar irradiance at Lyman {dollar}alpha{dollar}. The amplitude of the ozone decrease is about 1% of its equilibrium value at about 70-75 km. Below 50 km, the ozone increase is due to the increased photolysis of molecular oxygen by solar irradiance over the Herzberg continuum. The peak of the ozone increase is located at about 35 km and is about 0.3% of its equilibrium value at that level. The peaks of the ozone oscillation in the upper stratosphere precede the peaks of the solar oscillation. The phase lag of the ozone response decreases from about 3 days at 30 km to 0 at 35 km and {dollar}-{dollar}9 days at 50 km as a result of the strong influence of the temperature feedback on the ozone response through the temperature-dependent chemical reaction rates. The temperature feedback has a greater impact on the stratospheric ozone response than on the mesospheric ozone response.; The modified NCAR two-dimensional model originally developed by Guy Brasseur's group is also used to study the short-term ozone response. The comparison of the 2D results with the 1D results shows that horizontal transport increases the phase lag of the temperature response. This large phase lag is essential to simulate the observed ozone response given by Nimbus 7 SBUV observations. The sensitivity of the mesospheric ozone response to water vapor, vertical diffusion and the spectral structure of solar variations is tested by the 1D and 2D models and the results are discussed. The seasonal and latitudinal (up to 45{dollar}spcirc{dollar}) variations in the ozone response are evaluated by using the 2D model.; The 2D model is also used to study the ozone response to solar UV irradiance variations over solar cycle periods. The amplitudes of the solar UV variations during solar cycle 21, as derived from SME observations, is employed in the 2D model. A negative ozone response at altitudes of 60-78 km, except in the region over high latitudes in winter, results from the enhanced solar Lyman {dollar}alpha{dollar} at solar maximum. The largest negative ozone response, revealed by the 2D model, about {dollar}-{dollar}10%, is found at 72-78 km at middle to high latitudes in summer. The latitudinal dependence of the ozone response above 60 km except at high winter latitudes is very much determined by the latitudinal dependence of water vapor. The positive ozone response around 80 km is caused by the dramatic decrease in water vapor and the enhanced solar irradiance over the SRB. The increased solar irradiance over the Herzberg continuum is responsible for the positive ozone response below about 45 km. The calculated ozone response at the equator is compared with the limited available observations, and the differences between them are discussed. The sensitivity of the ozone response to solar variations over different spectral regions, to different photochemical families and to increased methane are evaluated. (Abstract shortened by UMI.)
机译:建立了具有垂直扩散的一维光化学辐射时变模型,以研究中层大气中臭氧对太阳旋转27天期间太阳紫外线辐射变化的响应。一维模型的结果表明,随着Lyman {dollar} alpha {dollar}处太阳辐照度的增加,臭氧在60-80 km的高度处减少。臭氧减少的幅度约为其平衡值(在约70-75 km处)的1%。在50 km以下,臭氧的增加是由于Herzberg连续体上太阳辐射引起的分子氧的光解增加。臭氧增加量的峰值位于约35 km处,约为该水平上其平衡值的0.3%。平流层上部的臭氧振荡的峰值先于太阳振荡的峰值。臭氧响应的相位滞后从30 km时的约3天减少到35 km时的0天,以及50 km时的{day}-{dollar} 9天,这是由于温度反馈对臭氧响应的强烈影响。温度相关的化学反应速率。温度反馈对平流层臭氧响应的影响大于对中层臭氧响应的影响。最初由Guy Brasseur的小组开发的修改后的NCAR二维模型也用于研究短期臭氧响应。 2D结果与1D结果的比较表明,水平传输会增加温度响应的相位滞后。这种大的相位滞后对于模拟Nimbus 7 SBUV观测值给出的观测到的臭氧响应至关重要。用一维和二维模型测试了中层臭氧对水蒸气,垂直扩散和太阳变化的光谱结构的敏感性,并讨论了结果。使用2D模型评估臭氧响应中的季节和纬度(最高45 {sp} {dol})变化。 2D模型还用于研究臭氧对太阳周期内太阳紫外线辐射变化的响应。在2D模型中采用了从SME观测值得出的太阳周期21中太阳紫外线变化的幅度。除冬季最高纬度地区以外,海拔60-78公里处的臭氧负响应是由于太阳最高时的莱曼{dollar} alpha {dollar}增强。二维模型显示,最大的负臭氧响应大约在{dollar}-{dollar} 10%之间,是在夏季中高纬度的72-78 km处发现的。除冬季高纬度以外,高于60 km的臭氧响应的纬度依赖性很大程度上取决于水蒸气的纬度依赖性。大约80 km处积极的臭氧响应是由于水汽的急剧减少和SRB上方太阳辐射的增强引起的。 Herzberg连续体上日照强度的增加是造成约45 km以下臭氧正反应的原因。将在赤道处计算出的臭氧响应与有限的可用观测值进行比较,并讨论它们之间的差异。评估了臭氧对不同光谱区域的太阳变化,不同光化学族和增加的甲烷的敏感性。 (摘要由UMI缩短。)

著录项

  • 作者

    Chen, Li.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Physics Atmospheric Science.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 大气科学(气象学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号