首页> 外文学位 >A large element computation for polygonal plates, shallow shells and cylindrical shells with the Fourier series and state-variable methods.
【24h】

A large element computation for polygonal plates, shallow shells and cylindrical shells with the Fourier series and state-variable methods.

机译:使用傅里叶级数和状态变量方法对多边形板,浅壳和圆柱壳进行大元素计算。

获取原文
获取原文并翻译 | 示例

摘要

The significance of a large element computation is that it drastically improves the computational efficiency by minimizing the work of mesh generation for modeling a physical problem. In this study, a large polygonal-shaped element was developed to compute problems involving the statics and dynamics of plates and shallow shells. A Fourier series method and a state-variable method were combined to solve the statics and dynamics of the polygonal-shaped plates or shallow shells with any admissible boundary conditions for isotropic and anisotropic materials. With the state-variable method, the anisotropic material properties and the initial curvature can be easily incorporated into the formulation and be solved.;A large cylindrical element was also developed for estimating the plastic area of a circumferential through crack on a cylindrical shell. The Fourier series method combined with the Fourier expansion-contraction technique effectively estimated the plastic area for a small or large crack in either a thin or a thick elastic perfectly-plastic cylindrical shell.;It is convenient to use these elements because the procedure for improving the solution accuracy involves no mesh generation or the increment of boundary points. This large polygonal element is more powerful in treating the boundary geometry than several other large element methods, such as the differential quadrature method and the hierarchic finite element method. The effectiveness and accuracy of this method was demonstrated by many examples such as the plate and shallow shell bending and vibration which were compared with the exact solutions and finite element solutions.
机译:大元素计算的意义在于,它通过最小化用于建模物理问题的网格生成工作,极大地提高了计算效率。在这项研究中,开发了一个大的多边形元素来计算涉及板和浅壳的静力学和动力学的问题。结合傅里叶级数法和状态变量法来求解具有各向同性和各向异性材料的边界条件的多边形板或浅壳的静力学和动力学。通过状态可变方法,可以很容易地将各向异性材料的性能和初始曲率纳入配方并加以解决。;还开发了一种大型圆柱元件,用于估计圆柱壳上通过裂纹的圆周塑性区域。傅里叶级数方法与傅里叶伸缩技术相结合可以有效地估计薄或厚的弹性完全塑性圆柱壳中小裂纹或大裂纹的塑性面积;使用这些元素方便,因为改进步骤求解精度不涉及网格生成或边界点的增加。这种大型多边形元素在处理边界几何方面比其他几种大型元素方法(例如微分求积法和分层有限元方法)更强大。通过许多实例证明了该方法的有效性和准确性,例如将板和浅壳弯曲和振动与精确解和有限元解进行了比较。

著录项

  • 作者

    Fu, Yee-Chung.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号