首页> 外文学位 >Process development for iridium aluminide coated silicon carbide-carbon functionally graded material for the oxidation protection of graphite.
【24h】

Process development for iridium aluminide coated silicon carbide-carbon functionally graded material for the oxidation protection of graphite.

机译:铝化铱涂层碳化硅-碳功能分级材料的工艺开发,用于石墨的氧化保护。

获取原文
获取原文并翻译 | 示例

摘要

Silicon carbide has long been used to protect carbonaceous materials such as graphite and carbon/carbon composites from the detrimental effects of high temperature oxidizing environments. However, the effectiveness of SiC is limited at elevated temperatures by coefficient of thermal expansion mismatch stresses and a breakdown of the protective SiO{dollar}sb2{dollar} layer which forms as SiC is oxidized. Functionally graded materials (FGM) represent a new class of materials specifically engineered to accommodate CTE mismatch stresses. The SiC-C FGM is one such system. Grading the interface between SiC and C produces a gradually changing composite material capable of accommodating the CTE mismatch stresses that arise as a result of high temperature service. Iridium is another material that has been used as a protective coating for carbonaceous materials, it is non-reactive with carbon, has an extremely high melting temperature, 2447{dollar}spcirc{dollar}C, and has the lowest known rate of oxygen diffusivity; however, at 900{dollar}spcirc{dollar}C Ir forms a volatile oxide. Ir can be alloyed with Al to form the intermetallic compound IrAl. IrAl has a melting temperature of 2120{dollar}spcirc{dollar}C, has been shown to be non-reactive with carbon, and upon oxidation forms a protective {dollar}rm Alsb2Osb3{dollar} layer that inhibits the oxidation and volatilization of Ir.; The aim of this research was to develop a process for the deposition IrAl onto SiC-C FGMs so that compatibility of the two coatings could be evaluated for potential high temperature use. It was found that dense SiC-C FGM coatings could be deposited on graphite using the SiC{dollar}sb4{dollar}-{dollar}rm Csb3Hsb8{dollar}-H{dollar}sb2{dollar} gas system. By increasing the H{dollar}sb2{dollar} flow rate in the reactant gas stream it was shown that the porosity of the coating could be essentially eliminated. High temperature chemical compatibility studies showed that IrAl thin films are poor high temperature oxidation barrier for SiC-C FGMs. The large CTE mismatch between IrAl {dollar}(8.8times10sp{lcub}-6{rcub}spcirc {lcub}rm C{rcub}sp{lcub}-1{rcub}){dollar} and SiC {dollar}(4.3times10sp{lcub}-6{rcub}spcirc{lcub}rm C{rcub}sp{lcub}-1{rcub}){dollar} combined with extensive interfacial chemical reactions cause the IrAl thin films to debond at temperatures as low as 700{dollar}spcirc{dollar}C. Given the poor performance of the IrAl coatings it is recommended that for the high temperature oxidation protection of graphite, only the SiC-C FGM should be used. Where additional oxidation protection is needed the SiC layer should be made thicker to compensate for the higher oxidation rate, rather than relying on an additional coating for protection.
机译:长期以来,碳化硅一直用于保护含碳材料(例如石墨和碳/碳复合材料)免受高温氧化环境的不利影响。然而,SiC的有效性在高温下受到热膨胀系数失配应力和随着SiC被氧化形成的保护性SiO {sb2sb2 {dollar}层的破坏的限制。功能梯度材料(FGM)代表了专门设计用于适应CTE失配应力的新型材料。 SiC-C FGM就是这样一种系统。分级SiC和C之间的界面会产生逐渐变化的复合材料,该材料能够适应由于高温使用而产生的CTE失配应力。铱是另一种已被用作碳质材料的保护涂层的材料,它与碳不发生反应,具有极高的熔化温度2447447C,并且已知的氧扩散率最低;然而,在900℃时,C Ir形成挥发性氧化物。 Ir可以与Al合金化以形成金属间化合物IrAl。 IrAl的熔化温度为2120℃,已证明与碳不反应,并且在氧化时形成保护性的Alsb2Osb3 {dol尔}保护层,可抑制Ir的氧化和挥发。 。;这项研究的目的是开发一种将IrAl沉积到SiC-C FGM上的方法,以便可以评估这两种涂层的相容性以用于潜在的高温用途。已经发现,可以使用SiC {sb4sb4 {dollar}-{dollar} rm Csb3Hsb8 {dollar} -H {dollar} sb2 {dollar}气体系统在石墨上沉积致密的SiC-C FGM涂层。通过增加反应气流中的Hsbsb2 {dollar}流速,表明可以基本上消除涂层的孔隙率。高温化学相容性研究表明,IrAl薄膜对SiC-C FGM的高温氧化阻挡层较差。 IrAl {dollar}(8.8times10sp {lcub} -6 {rcub} spcirc {lcub} rm C {rcub} sp {lcub} -1 {rcub}){dollar}和SiC {dollar}之间的巨大CTE失配(4.3times10sp {lcub} -6 {rcub} spcirc {lcub} rm C {rcub} sp {lcub} -1 {rcub}){美元}加上大量的界面化学反应会导致IrAl薄膜在低至700的温度下脱胶{ Dollar} spcirc {dollar} C。鉴于IrAl涂层的性能较差,建议对石墨进行高温氧化保护,仅应使用SiC-C FGM。在需要额外的氧化保护的地方,应使SiC层更厚以补偿较高的氧化速率,而不是依靠额外的涂层进行保护。

著录项

  • 作者

    Richards, Mark Rowse.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 295 p.
  • 总页数 295
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号