首页> 外文学位 >Physiological interactions of silica, iron oxide, and coal particulates on microbial growth and isolation of coalbed-derived microorganisms.
【24h】

Physiological interactions of silica, iron oxide, and coal particulates on microbial growth and isolation of coalbed-derived microorganisms.

机译:二氧化硅,氧化铁和煤颗粒对微生物生长和煤层微生物的分离的生理相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Coal beds are anoxic, subsurface environments containing many complex, cross-linked, macromolecular, and primarily indeterminate organic structures of geological origin. Although some studies have examined coalbed community structures using culture-independent methods, few reports have focused on the isolation and characterization of coalbed microorganisms. It is not unlikely that communities with unique metabolic properties have evolved over time due to constant exposure to the unique chemical composition of coal and the generally anoxic environment in coal beds. Using a variety of anaerobic culturing techniques, we isolated a new genus of sulfate-reducing bacteria, Desulfocarbo indianensis SCBM, and a new species of iron-, sulfur-, and Mn(IV)-reducing bacteria, Desulfuromonas carbonis ICBM, from co-produced water extracted from a coal bed in Indiana. Our isolation of novel microbes suggests that long-term exposure to unique subsurface coal environments has selected novel microorganisms.;Most microorganisms in coal beds, as well as microorganisms in other natural systems, are attached to solid surfaces or in particle-microbe aggregates, rather than present as planktonic cells. Interactions of microorganisms with fine particles have been reported to affect microbial physiology and metabolism. However, very little is known about the mechanisms underlying microbial growth enhancement or inhibition. Here, we investigated the effects of hydrous ferric oxide, a high-purity silica, and ground coal on Acidovorax sp. 2AN growth. We systematically evaluated hypothetical mechanisms previously proposed by others about how particulates affect microbial growth. Our results indicate that growth enhancement did not result from particulates serving as an additional electron acceptor (Fe(III)), nutrient source (Fe or Si), or a pH buffer. Enhanced growth was also not a result of alteration of proton motive force due to proximity to a negatively-charged surface leading to changes in ATP generation. The stimulatory effect was potentially the result of greater microbial access to sorbed substrates or a more generalized effect on gene expression from cell-particle association.
机译:煤层是一种缺氧的地下环境,包含许多复杂的,交联的,大分子的且主要是不确定的地质来源的有机结构。尽管一些研究使用与培养无关的方法研究了煤层群落结构,但很少有报道关注煤层微生物的分离和表征。由于不断暴露于煤的独特化学成分和煤层中普遍的缺氧环境,具有独特的代谢特性的社区随着时间的推移发展的可能性不大。通过多种厌氧培养技术,我们从共采自印第安纳州一个煤层的采出水。我们对新型微生物的分离表明,长期暴露于独特的地下煤炭环境中已经选择了新型微生物。;煤层中的大多数微生物以及其他自然系统中的微生物都附着在固体表面或颗粒-微生物聚集体中,而不是比浮游细胞还多。据报道,微生物与细颗粒的相互作用会影响微生物的生理和代谢。然而,关于微生物生长增强或抑制的机制知之甚少。在这里,我们研究了含水氧化铁,高纯度二氧化硅和煤粉对Acidovorax sp。的影响。 2AN增长。我们系统地评估了其他人先前提出的关于微粒如何影响微生物生长的假设机制。我们的结果表明,生长增强不是由用作附加电子受体(Fe(III)),营养源(Fe或Si)或pH缓冲液的颗粒导致的。增强的生长也不是由于接近带负电荷的表面导致质子原动力改变的结果,从而导致ATP产生的变化。刺激作用可能是微生物接触被吸附的底物的作用更大,或者是细胞-颗粒结合对基因表达产生更普遍影响的结果。

著录项

  • 作者

    An, Thuy Thi Hong.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Environmental science.;Biochemistry.;Microbiology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 255 p.
  • 总页数 255
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号