首页> 外文学位 >Deformation and texture development in deep Earth mineral phases: Implications for seismic anisotropy and dynamics.
【24h】

Deformation and texture development in deep Earth mineral phases: Implications for seismic anisotropy and dynamics.

机译:地球深部矿物相的变形和质地发展:对地震各向异性和动力学的影响。

获取原文
获取原文并翻译 | 示例

摘要

The contribution of this thesis is to expand the current knowledge of deformation mechanisms in mineral phases of the lower mantle, the D" region, and the inner core. Quantitative information about texture and stress is obtained using in-situ radial synchrotron x-ray diffraction and the Rietveld method to deconvolute diffraction images. Transformation textures are interpreted in terms of structural relationships between the starting material and product phases or in terms of minimization of strain energy. Polycrystal plasticity modeling is used to interpret deformation textures in terms of activity of slip systems and mechanical twinning.;In Chapter 2 texture development resulting from phase transformations and deformation is explored in (Mg,Fe)SiO3 perovskite and (Mg,Fe)SiO 3 perovskite + (Mg,Fe)O magnesiowiistite aggregates in the diamond anvil cell (DAC). For (Mg,Fe)SiO3 perovskite synthesized from enstatite a strong 001 texture develops that is related to a structural relationship between the enstatite and perovskite phases. For (Mg,Fe)SiO3 perovskite + (Mg,Fe)O magnesiowiistite aggregates synthesized from (Mg,Fe)2SiO 4 olivine and ringwoodite, transformation textures are controlled by minimization of strain energy during the phase transformation via mechanical twinning and/or nucleation of grains in low strain energy configurations. Polycrystal plasticity modeling of deformation textures indicates that slip on (001) planes dominates in (Mg,Fe)SiO3 perovskite at high pressure and room temperature and this does not appear to change with laser heating. Interestingly when two phase aggregates of (Mg,Fe)SiO3 perovskite + (Mg,Fe)O magnesiowtistite are deformed, magnesiowustite does not develop significant texturing, which may indicate that it would not be a source of anisotropy in the lower mantle.;Deformation of CaIrO3 post-perovskite (an analog for (Mg,Fe)SiO 3 postperovskite) in the deformation-DIA large volume press is explored in chapter 3. A sintered polycrystalline sample of CaIrO3 post-perovskite is deformed at a variety of pressure and temperature conditions up to 6 GPa and 1300 K and at a varying strain rates. In all cases (010) lattice planes align perpendicular to the compression direction upon shortening, and there is little change in texture with temperature, pressure, or strain rate Polycrystal plasticity modeling shows that this texture pattern is consistent with slip on (010)[100]. This is in contrast to textures produced in room-temperature diamond anvil cell (DAC) measurements on MgGeO3 and MgSiO 3 pPv which display textures with (100) and (110) lattice planes at high angles to the compression direction. Thus it is likely that CaIrO3 post-perovskite is not a good analog for the plastic behavior of MgSiO3 pPv.;Chapter 4 explores transformation and deformation textures in bcc, fcc, and hcp phases of Fe deformed in a laser heated DAC. Specifically radial DAC techniques have been advanced by developing a method to simultaneously heat and perform controlled deformation using a gas membrane driven DAC system and in-situ laser heating. In bee iron, room temperature compression generates a texture characterized by (100) and (111) poles parallel to the compression direction. During the deformation induced phase transformation to hcp iron, a subset of orientations preferentially transform to the hcp structure first generating a texture of (011¯0) planes at high angles to compression. With further deformation, remaining grains transform, and this results in a texture that obeys the Burgers relationship of (110) bcc//(0001)hcp. This is in contrast to high temperature results that indicate that texture is developed through dominant pyramidal ⟨a+c⟩ {211 2}(2113) and basal (0001)(2 110) slip. The high temperature fcc phase develops a 110 texture typical for fcc metals deformed in compression. (Abstract shortened by UMI.)
机译:本文的目的是扩大对下地幔,D”区和内芯矿物相的变形机理的现有知识。利用原位径向同步辐射X射线衍射获得有关织构和应力的定量信息。用Rietveld方法对衍射图像进行反卷积;根据起始材料和产物相之间的结构关系或使应变能最小化来解释相变织构;根据滑移系统的活动性,使用多晶塑性模型来解释形变织构。在第二章中,探讨了由相变和变形引起的织构发展(Mg,Fe)SiO3钙钛矿和(Mg,Fe)SiO3钙钛矿+(Mg,Fe)O镁硅锰铁矿在金刚石砧座中的聚集(对于由顽辉石合成的(Mg,Fe)SiO3钙钛矿,会产生强烈的001织构,这与结构关系有关在顽辉石和钙钛矿相之间。对于由(Mg,Fe)2SiO 4橄榄石和菱铁矿合成的(Mg,Fe)SiO3钙钛矿+(Mg,Fe)O镁菱锰矿聚集体,通过机械孪晶和/或成核作用在相变过程中通过最小化应变能来控制相变织构低应变能配置下的晶粒分布。变形织构的多晶塑性模型表明,在高压和室温下,(Mg,Fe)SiO3钙钛矿中(001)平面上的滑移占主导地位,并且似乎不会随着激光加热而改变。有趣的是,当(Mg,Fe)SiO3钙钛矿+(Mg,Fe)O镁辉石的两相聚集体变形时,菱镁矿不会形成明显的织构,这可能表明它不会成为下地幔各向异性的来源。第3章探讨了变形-DIA大体积压力机中钙钛矿粉后钙钛矿((Mg,Fe)SiO 3钙钛矿的类似物)的制备。钙钛矿粉钙钛矿烧结多晶样品在各种压力和温度下变形在高达6 GPa和1300 K的条件下,并且应变速率不同。在所有情况下,(010)晶格面在缩短时都垂直于压缩方向对齐,并且随温度,压力或应变率的变化几乎没有纹理变化。多晶塑性模型表明,这种纹理图案与(010)上的滑移一致[100] ]。这与在MgGeO3和MgSiO 3 pPv上的室温金刚石砧盒(DAC)测量中产生的纹理形成对比,后者在与压缩方向成高角度时显示具有(100)和(110)晶格面的纹理。因此,CaIrO3钙钛矿可能不是MgSiO3 pPv塑性行为的良好模拟物。第4章探讨了在激光加热的DAC中变形的Fe的bcc,fcc和hcp相的相变和变形织构。通过开发一种使用气膜驱动DAC系统同时加热并执行受控变形的方法,特别是径向DAC技术得到了发展,该方法使用气膜驱动DAC系统和原位激光加热。在蜜蜂铁中,室温压缩会产生纹理,其纹理特征为平行于压缩方向的(100)和(111)极。在由变形引起的向hcp铁的相变过程中,取向的子集优先转换为hcp结构,该结构首先在高角度压缩时生成(011’0)平面的纹理。随着进一步的变形,剩余的晶粒发生变形,这将导致纹理遵​​循(110)bcc //(0001)hcp的Burgers关系。这与高温结果相反,高温结果表明纹理是通过主要的金字塔ala + c〉 {211 2}(2113)和基底(0001)(2 110)滑移形成的。高温fcc相会形成110质构,这是压缩中变形的fcc金属的典型特征。 (摘要由UMI缩短。)

著录项

  • 作者

    Miyagi, Lowell Masataka.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Geology.;Geophysics.;Mineralogy.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 281 p.
  • 总页数 281
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号