首页> 外文学位 >Neutral particle integral transport in inertial confinement of fusion systems using time dependent integral methods.
【24h】

Neutral particle integral transport in inertial confinement of fusion systems using time dependent integral methods.

机译:时变积分方法在聚变系统惯性约束中的中性粒子积分传输。

获取原文
获取原文并翻译 | 示例

摘要

Time-dependent radiative transport is important in inertial confinement of fusion targets. The target must be illuminated with as symmetric a source as possible to ensure an isentropic compression. Once the fusion event begins, energy is taken away from the burn via radiation transport. This process represents a large percentage of the total energy loss. Similarly, neutron transport is important to calculate accurately as it influences neutronic heating and the time-dependent neutron spectrum. Both radiative and neutronic transport are valuable as a diagnostic tools.; Four time-dependent finite media benchmarks were calculated using the time-dependent integral method. The four benchmarks that were produced are: homogeneous Cartesian with uniform source, homogeneous Cartesian with localized source, homogeneous spherical with localized source, and heterogeneous Cartesian with localized source. The benchmarks were calculated using the subtraction of singularity method, solving for the uncollided flux analytically and numerically solving for the collided flux. Time-dependent, heterogeneous, integral kernels were derived for point, line, and planar geometries. These kernels are newly developed to the field of radiative integral transport.; The Time-Dependent Bubble Integral Transport (TBIT) method was introduced. The technique follows the causality of the particles exactly without the need to save the complete history of the problem. The method was benchmarked against the four finite media, time-dependent benchmarks. In Cartesian coordinates, the TBIT method produced errors of no more than 1.6%. In spherical coordinates, the TBIT method produced a maximum error in three-dimensional spherical coordinates of 6.5%.; The TBIT method was applied to two problems typical to Inertial Confinement of Fusion devices. A three-dimensional spherical capsule illumination was simulated for a two, four, and six laser entrance hole spherical hohlraum. As the surface area of the laser entrance hole gets larger, the capsule illumination becomes more non-uniform. The TBIT method predicted that the greater the number of laser entrance holes, for equal surface areas, the more uniform the capsule illumination. The second application was for a neutron time of flight diagnostic found on experimental ICF devices. The simulation showed that scattering effects from the walls would shift the detected spectrum only a small amount.
机译:时变辐射传输在聚变靶的惯性约束中很重要。必须用尽可能对称的光源照射目标,以确保等熵压缩。一旦聚变事件开始,能量便会通过辐射传输从燃烧中带走。该过程占总能量损失的很大一部分。同样,中子输运对于精确计算也很重要,因为它会影响中子加热和随时间变化的中子谱。辐射运输和中子运输都可以作为诊断工具。使用时变积分方法计算了四个时变有限媒体基准。产生的四个基准是:具有均匀源的齐次直角坐标,具有局部源的齐次直角坐标,具有局部源的齐次球形,以及具有局部源的异构直角坐标。使用奇异值减法计算基准,通过解析法求解非碰撞通量,并通过数值求解碰撞通量。对于点,线和平面几何图形,导出了时间相关的异构内核。这些内核是辐射整体传输领域的最新开发。引入了时变气泡积分运输(TBIT)方法。该技术完全遵循粒子的因果关系,而无需保存问题的完整历史记录。该方法针对四种有限媒体的时间相关基准进行了基准测试。在笛卡尔坐标系中,TBIT方法产生的误差不超过1.6%。在球坐标系中,TBIT方法在三维球坐标系中产生的最大误差为6.5%。 TBIT方法被应用于融合设备惯性约束的两个典型问题。模拟了针对两个,四个和六个激光入射孔球形透镜的三维球形胶囊照明。随着激光入射孔的表面积变大,胶囊的照明变得更加不均匀。 TBIT方法预测,对于相等的表面积,激光入射孔的数量越多,胶囊照明越均匀。第二个应用是在实验性ICF设备上发现中子飞行时间诊断。模拟表明,墙壁的散射效应只会使检测到的光谱发生少量偏移。

著录项

  • 作者

    Olson, Kenneth Ray.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Nuclear.; Physics Elementary Particles and High Energy.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 248 p.
  • 总页数 248
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;高能物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号