首页> 外文学位 >A coupled geomechanics and flow modeling study for multistage hydraulic fracturing of horizontal wells in enhanced geothermal systems applications.
【24h】

A coupled geomechanics and flow modeling study for multistage hydraulic fracturing of horizontal wells in enhanced geothermal systems applications.

机译:在增强的地热系统应用中,用于水平井多级水力压裂的地质力学和流动模型研究。

获取原文
获取原文并翻译 | 示例

摘要

The US has significant amount of underutilized geothermal resources that have recently gained more attention due to the technological advancements and practical knowledge brought from the horizontal drilling and multistage hydraulic fracturing operations in tight oil and shale gas reservoirs. The learnings from these unconventional efforts are the subject of this research study in order to conduct the feasible transformation of applying the technical and operational expertise into Enhanced Geothermal System (EGS).;A commercial hydraulic fracturing simulation model coupled with geomechanics and fluid flow concepts was used in a geothermal case study, allowing the simulating of hydraulic fracture creation while considering natural fracture network. First, concepts of the coupled unconventional model were studied in a shale reservoir with input parameters obtained from drilling, completion, and stimulation treatments utilizing well logs and production data to validate the integrated model. Then, a coupled Unconventional Fracture Model (UFM) was used for creating a suitable fracture network to be implemented for design in an EGS application. The role of in-situ stress state, pre-existing fracture network characteristics, injection fluid and proppant properties was investigated to optimize the design parameters and the economics for the EGS feasibility study.;The effects of various distribution patterns in natural fractures, complex fracture geometries, stress anisotropy, injection rates, surface and bottom holes pressures, fluid viscosity and fracturing proppant concentration were studied through simulations of hydraulic fracturing treatment. Modeling results confirmed that when designing for EGS, a widely distributed pre-existing natural fracture network can lead to interactions between hydraulic fractures and natural fractures and therefore raise the level of complexity of the total fracture network, which is not the desired fracture geometry for a successful EGS application. Though the overall complexity of the fracture network is also depended on many other factors such as lithology, temperature, formation fluid pressure and in-situ stress state, results from optimized simulation indicated that it can be minimized by utilizing treatment parameters such as proper fluids viscosity, proppants concentration, pumping rate, fracture stage spacing and well spacing during actual stimulation operations.
机译:美国拥有大量未充分利用的地热资源,由于致密油和页岩气储层的水平钻井和多级水力压裂作业带来的技术进步和实践知识,近来引起了越来越多的关注。这些非常规工作的经验教训是本研究的主题,目的是进行将技术和运营专业知识应用到增强地热系统(EGS)中的可行转换。;商业水力压裂模拟模型与地力学和流体流动概念相结合用于地热案例研究,可以在考虑天然裂缝网络的同时模拟水力裂缝的产生。首先,在页岩储层中研究了耦合非常规模型的概念,并利用钻井,测井和生产数据验证了集成模型,并从钻井,完井和增产措施中获得了输入参数。然后,使用耦合的非常规裂缝模型(UFM)来创建合适的裂缝网络,以在EGS应用程序中进行设计。研究了地应力状态,预先存在的裂缝网络特征,注入流体和支撑剂特性的作用,以优化EGS可行性研究的设计参数和经济性。;自然裂缝,复杂裂缝中各种分布方式的影响通过水力压裂处理的模拟研究了几何形状,应力各向异性,注入速率,表面和井底压力,流体粘度和压裂支撑剂浓度。建模结果证实,当设计EGS时,广泛分布的预先存在的天然裂缝网络会导致水力裂缝和天然裂缝之间的相互作用,因此提高了总裂缝网络的复杂程度,而这并不是理想的裂缝几何形状。成功的EGS应用程序。尽管裂缝网络的总体复杂性还取决于许多其他因素,例如岩性,温度,地层流体压力和原位应力状态,但优化模拟的结果表明,可以通过利用适当的流体粘度等处理参数来使其最小化,在实际增产作业中,支撑剂浓度,抽速,裂缝段间距和井间距。

著录项

  • 作者

    Hu, Xiexiaomeng.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Petroleum engineering.;Energy.;Sustainability.
  • 学位 M.S.
  • 年度 2016
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号