首页> 外文学位 >Artificial neural networks, non linear auto regression networks (NARX) and Causal Loop Diagram approaches for modelling bridge infrastructure conditions
【24h】

Artificial neural networks, non linear auto regression networks (NARX) and Causal Loop Diagram approaches for modelling bridge infrastructure conditions

机译:人工神经网络,非线性自回归网络(NARX)和因果环图方法,用于建模桥梁基础设施条件

获取原文
获取原文并翻译 | 示例

摘要

The quality of highway bridge infrastructure in United States is of major concern. One in every four bridges in the US is deficient. This research applied Artificial Intelligence, Systems Dynamics and linear modeling techniques to investigate the causes and effects of bridge deterioration and to forecast bridge infrastructure condition and improvement costs. The main contribution of the research is the development and demonstration of these methods within the context of highway bridges. These methods provide bridge designers and policy makers new tools for maintaining, improving, and delivering high quality bridge infrastructure.;To start with, a comprehensive review of the current state of bridge deficiency in US was conducted. Through extensive data mining of the National Bridge Inventory (NBI), the causes and trends in bridge deficiency were identified. This exercise addressed questions such as: What is the current extent of bridge deficiency? Is deficiency getting better or worse? What are the biggest problems causing deficiencies? It was observed that though the general condition of bridges is improving, additional work needs to be done in fixing bridge deficiency and bridge functionally obsolescence in particular.;Subsequent to the review of bridge deficiency, four distinct but related modeling studies were conducted. These phases are: 1) Capacity Obsolescence/Sustainability assessment, 2) Causal Loop Diagram (CLD) and linear modeling for bridge improvement costs, 3) Artificial Neural Network (ANN) model for bridge condition ratings and bridge variable effects, 4) Non-linear auto regression (NARX) model for bridge inventory condition prediction.;In the first phase, a conceptual model was developed to minimize capacity obsolescence, one face of functional obsolescence. A framework was developed to minimize bridge capacity obsolescence while optimizing the use of embodied energy over the service life of bridges. The research demonstrated how design phase consideration of bridge obsolescence can contribute to sustainability of bridge infrastructure.;As a novel approach for studying bridge improvement costs, the second phase used a Causal Loop Diagram (CLD), a tool used in the field of System Dynamics. Using a CLD, the causes and effects for bridge deterioration were qualitatively described. A segment of the qualitative relationships described through the CLD were then analyzed quantitatively for the South Carolina bridge inventory. The quantitative model was based on linear modeling and was developed and validated using NBI data. The model was then applied to estimate future bridge inventory sufficiency ratings and improvement costs under possible funding scenarios.;For effective mitigation of bridge deficiency, it is important to identify the effects of different variables on bridge conditions and forecast bridge condition. In the third phase of modeling, Artificial Neural Networks (ANN) models were used to study the effects of bridge variables on bridge deck and superstructure condition ratings. The models considered prestressed concrete bridges in South Eastern United States. Simulations based on Full Factorial Design (FFD) were conducted using the developed ANN models. The simulations highlighted the effects of skew, span and age on bridge condition ratings. Given sufficient source data, the approach can be broadly applied to consider other bridge types and design variables.;In the last phase, time based ANN learning algorithms were used to forecast bridge condition ratings and bridge improvement costs. Non Linear Auto Regression with Exogenous Inputs (NARX) model was developed using NBI data for South Carolina bridges over the last decade. The study estimated bridge condition ratings as a function of bridge geometry, age, structural, traffic attributes and bridge improvement spending.;This doctoral research contributed to the development of multiple qualitative and mathematical models for forecasting bridge inventory condition and improvement costs by applying ANN, CLD, and linear regression techniques. While the conclusions of these studies are bound by the scope of the data and methodical constraints of the research, the methods can be more generally applied to aid in better bridge management policies and contribute to sustainable bridge infrastructure in United States.
机译:在美国,公路桥梁基础设施的质量是主要关注的问题。在美国,每四座桥梁中就有一座是不足的。这项研究应用人工智能,系统动力学和线性建模技术来研究桥梁劣化的原因和影响,并预测桥梁基础设施状况和改善成本。研究的主要贡献是在公路桥梁的背景下开发和演示了这些方法。这些方法为桥梁设计者和政策制定者提供了用于维护,改善和交付高质量桥梁基础设施的新工具。首先,对美国桥梁不足的现状进行了全面回顾。通过对国家桥梁清单(NBI)的大量数据挖掘,确定了桥梁缺陷的原因和趋势。该练习解决了以下问题:当前桥梁缺乏程度如何?缺乏症会好转还是恶化?导致缺陷的最大问题是什么?观察到,尽管桥梁的总体状况正在改善,但是在修复桥梁缺陷特别是桥梁功能过时方面还需要做更多的工作。在对桥梁缺陷进行回顾之后,进行了四项不同但相关的建模研究。这些阶段包括:1)容量过时/可持续性评估,2)因果图(CLD)和线性建模,以改善桥梁成本,3)人工神经网络(ANN)模型,用于桥梁状况评估和桥梁变量影响,4)非-用于桥梁库存状况预测的线性自动回归(NARX)模型。在第一阶段,开发了概念模型以最大程度地减少容量过时,即功能过时的一面。开发了一个框架,以最大程度地减少过桥能力,同时在桥梁的整个使用寿命内优化使用实际能量。该研究表明桥梁过时的设计阶段考虑如何有助于桥梁基础设施的可持续性。作为研究桥梁改进成本的一种新颖方法,第二阶段使用了因果环图(CLD),这是系统动力学领域中使用的一种工具。使用CLD定性描述了桥梁损坏的原因和影响。然后对通过CLD描述的定性关系的一部分进行了定量分析,以了解南卡罗来纳州桥梁的清单。定量模型基于线性建模,并使用NBI数据进行了开发和验证。然后将该模型应用于在可能的供资情况下估计未来桥梁库存充足等级和改善成本。为了有效缓解桥梁不足,重要的是要确定不同变量对桥梁状况的影响并预测桥梁状况。在建模的第三阶段,使用人工神经网络(ANN)模型研究桥梁变量对桥面和上部结构状况等级的影响。这些模型考虑了美国东南部的预应力混凝土桥梁。使用已开发的ANN模型进行了基于全因子设计(FFD)的仿真。仿真结果突出了偏斜,跨度和寿命对桥梁状况等级的影响。给定足够的源数据,该方法可广泛应用于考虑其他桥梁类型和设计变量。在最后阶段,基于时间的ANN学习算法用于预测桥梁状况等级和桥梁改善成本。在过去十年中,使用NBI数据为南卡罗来纳州桥梁开发了带有外源输入的非线性自回归(NARX)模型。该研究估计桥梁状况等级是桥梁几何形状,年龄,结构,交通属性和桥梁改良支出的函数。;该博士研究通过应用ANN,为预测桥梁库存状况和改善成本的多种定性和数学模型做出了贡献, CLD和线性回归技术。虽然这些研究的结论受数据范围和研究方法约束的约束,但这些方法可以更广泛地应用于帮助制定更好的桥梁管理政策并为美国的可持续桥梁基础设施做出贡献。

著录项

  • 作者

    Jonnalagadda, Srimaruthi.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Civil engineering.;Artificial intelligence.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号