首页> 外文学位 >Development of Inorganic Nanomaterials as Photocatalysts for the Water Splitting Reaction.
【24h】

Development of Inorganic Nanomaterials as Photocatalysts for the Water Splitting Reaction.

机译:无机纳米材料作为水分解反应光催化剂的研究进展。

获取原文
获取原文并翻译 | 示例

摘要

The photochemical water splitting reaction is of great interest for converting solar energy into usable fuels. This dissertation focuses on the development of inorganic nanoparticle catalysts for solar energy driven conversion of water into hydrogen and oxygen. The results from these selected studies have allowed greater insight into nanoparticle chemistry and the role of nanoparticles in photochemical conversion of water in to hydrogen and oxygen. Chapter 2 shows that CdSe nanoribbons have photocatalytic activity for hydrogen production from water in the presence of Na2S/Na2SO 3 as sacrificial electron donors in both UV and visible light. Quantum confinement of this material leads to an extended bandgap of 2.7 eV and enables the photocatalytic activity of this material. We report on the photocatalytic H2 evolution, and its dependence on platinum co-catalysts, the concentration of the electron donor, and the wavelength of incident radiation. Transient absorption measurements reveal decay of the excited state on multiple timescales, and an increase of lifetimes of trapped electrons due to the sacrificial electron donors.;In chapter 3, we explore the catalytic activity of citrate-capped CdSe quantum dots. We show that the process is indeed catalytic for these dots in aqueous 0.1 M Na2S:Na2SO3, but not in pure water. Furthermore, optical spectroscopy was used to report electronic transitions in the dots and electron microscopy was used to obtain morphology of the catalyst. Interestingly, an increasing catalytic rate is noted for undialyzed catalyst. Dynamic light scattering experiments show an increased hydrodynamic radius in the case of undialyzed CdSe dots in donor solution.;In chapter 4 we show that CdSe:MoS2 nanoparticle composites with improved catalytic activity can be assembled from CdSe and MoS2 nanoparticle building units. We report on the photocatalytic H 2 evolution, quantum efficiency using LED irriadiation, and its dependence on the co-catalyst loading. Furthermore, optical spectroscopy, cyclic voltammetry, and electron microscopy were used to obtain morphology, optical properties, and electronic structure of the catalysts.;In chapter 5, illumination with visible light (lambda > 400 nm) photoconverts a red V2O5 gel in aqueous methanol solution into a green VO2 gel. The presence of V(4+) in the green VO2 gel is supported by Electron Energy Loss Spectra. High-resolution electron micrographs, powder X-ray diffraction, and selective area electron diffraction (SAED) data show that the crystalline structure of the V2O5 gel is retained upon reduction. After attachment of colloidal Pt nanoparticles, H2 evolution proceeds catalytically on the VO2 gel. The Pt nanoparticles reduce the H2 evolution overpotential. However, the activity of the new photocatalyst remains limited by the VO2 conduction band edge just below the proton reduction potential.;Chapter 6 studies the ability of IrO2 to evolve oxygen from aqueous solutions under UV irradiation. We show that visible illumination (lambda > 400 nm) of iridium dioxide (IrO2) nanocrystals capped in succinic acid in aqueous sodium persulfate solution leads to catalytic oxygen evolution. While the majority of catalytic hydrogen evolution comes from UV light, the process can still be driven with visible light. Morphology, optical properties, surface photovoltage measurements, and oxygen evolution rates are discussed.
机译:光化学水分解反应对于将太阳能转化为可用燃料非常感兴趣。本文主要研究无机纳米颗粒催化剂的开发,该催化剂用于太阳能驱动的水到氢​​和氧的转化。这些选定研究的结果使人们对纳米粒子化学以及纳米粒子在将水光化学转化为氢和氧中的作用有了更深入的了解。第2章表明,在Na2S / Na2SO 3作为紫外线和可见光下的牺牲电子给体的情况下,CdSe纳米带具有光催化从水中产生氢的活性。该材料的量子限制导致2.7 eV的带隙扩展,并使该材料具有光催化活性。我们报告了光催化氢气的演变,及其对铂助催化剂的依赖性,电子给体的浓度以及入射辐射的波长。瞬态吸收测量揭示了在多个时间尺度上激发态的衰减,以及由于牺牲电子给体而导致的俘获电子的寿命增加。;在第3章中,我们探讨了柠檬酸盐封端的CdSe量子点的催化活性。我们表明,该过程的确在0.1 M Na2S:Na2SO3水溶液中催化了这些点,但在纯水中却没有。此外,使用光谱学来报告点中的电子跃迁,并且使用电子显微镜来获得催化剂的形态。有趣的是,未渗析催化剂的催化速率有所提高。动态光散射实验表明,在供体溶液中未透析的CdSe点的情况下,流体动力学半径增大。在第4章中,我们表明可以用CdSe和MoS2纳米颗粒构建单元组装具有改善的催化活性的CdSe:MoS2纳米颗粒复合材料。我们报告了光催化H 2的演化,使用LED辐照的量子效率及其对助催化剂负载的依赖性。此外,使用光谱学,循环伏安法和电子显微镜获得催化剂的形态,光学性质和电子结构。在第5章中,用可见光(λ> 400 nm)照射在甲醇水溶液中光转化红色的V2O5凝胶。溶液变成绿色的VO2凝胶。电子能量损失谱支持绿色VO2凝胶中V(4+)的存在。高分辨率电子显微照片,粉末X射线衍射和选择区电子衍射(SAED)数据显示,还原后V2O5凝胶的晶体结构得以保留。胶体Pt纳米粒子附着后,H2的分解在VO2凝胶上催化进行。 Pt纳米颗粒减少了H2释放的超电势。然而,新型光催化剂的活性仍然受质子还原电位以下的VO2导带边缘的限制。第六章研究了IrO2在紫外线照射下从水溶液中释放氧气的能力。我们表明,在过硫酸钠水溶液中的琥珀酸中封端的二氧化铱(IrO2)纳米晶体的可见光照射(λ> 400 nm)导致催化氧的释放。尽管大部分催化氢放出来自紫外线,但该过程仍可以由可见光驱动。讨论了形态,光学性质,表面光电压测量和析氧速率。

著录项

  • 作者

    Frame, Fredrick Andrew.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Chemistry Inorganic.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号