首页> 外文学位 >Biophysical controls on canopy water balance.
【24h】

Biophysical controls on canopy water balance.

机译:冠层水平衡的生物物理控制。

获取原文
获取原文并翻译 | 示例

摘要

Observations and modeling of terrestrial hydrologic-cycle processes ranging in scale from the leaf-level to the whole catchment are presented. Measurements of transpiration rates at the leaf surface and at the canopy level along a topographic gradient in a temperate forest are analyzed first. The results show mid-day leaf-level transpiration rates for the dominant species in this forest changed dramatically along the topographic gradient. However the observations also indicate a close coupling between leaf-level fluxes and the difference in water potential from the leaves to the soil. As a result, the leaf area-specific hydraulic conductance for the dominant species in this forest was remarkably consistent along the topographic gradient despite significant spatial variability in stand structure and available soil moisture. The simulation model developed for this thesis reproduces the observed spatial trends in transpiration rates and hydraulic conductance in this forest. Model predictions of catchment stream flow also compare favorably with observations. Sensitivity analyses on the model results show the overall water balance in this system is most responsive to changes in total leaf area, root biomass, and leaf water status. In a related study, this model is also used to simulate the water-relations of Populus deltoides grown under near-ambient (430 μmol mol −1) and elevated (1200 μmol mol−1) carbon dioxide concentrations [CO2]. Modeling results confirmed observations showing leaf-level transpiration rates did not change with growth [CO 2] during periods marked by high soil moisture conditions. Total canopy water use during these periods was higher in elevated [CO2] because of the increased leaf production in these trees relative to the trees grown in near ambient [CO2]. Observations and modeling results also show that decreasing soil moisture content had a significantly greater effect on leaf-level fluxes in the trees grown in elevated [CO2] compared to those grown in near-ambient [CO2]. Consequently, the total canopy water use was approximately equal across [CO2] treatments during drought stress periods. Together these results suggest the effects of elevated [CO2] on the water-relations of this species are mediated primarily by changes in morphology and the physiological requirement to maintain favorable leaf water status during drought stress.
机译:介绍了从叶面到整个集水区范围的陆地水文循环过程的观测和建模。首先分析了在温带森林中沿地表梯度的叶片表面和冠层水平的蒸腾速率的测量结果。结果表明,该森林中优势种的中叶叶蒸腾速率随地形梯度发生了显着变化。但是,观察结果还表明,叶面通量与从叶片到土壤的水势差之间存在紧密的联系。结果,尽管林分结构和可用土壤水分存在明显的空间差异,但该森林中优势种的叶面积比水导率沿地形梯度显着一致。为此论文开发的模拟模型再现了该森林中蒸腾速率和水力传导的空间趋势。流域水流模型预测也与观测结果相吻合。对模型结果的敏感性分析表明,该系统中的总体水分平衡对总叶面积,根生物量和叶片水分状况的变化最敏感。在相关研究中,该模型还用于模拟在接近环境(430μmolmol -1 )和升高(1200μmol)的条件下生长的毛白杨的水关系。 mol −1 )二氧化碳浓度[CO 2 ]。建模结果证实了观察结果,表明在高土壤湿度条件下,叶片蒸腾速率并未随生长[CO 2 ]的变化而变化。在这些时期,较高的[CO 2 ]冠层总用水量较高,这是因为这些树木的叶片产量相对于在环境[CO 2 ]附近生长的树木有所增加。 。观测和建模结果还表明,与在接近环境[CO 2]下生长的树木相比,降低土壤水分含量对在升高的[CO 2 ]下生长的树木的叶水平通量具有更大的影响。 > 2 ]。因此,干旱胁迫期间[CO 2 ]处理的冠层总耗水量大致相等。这些结果共同表明,[CO 2 ]升高对该物种水分关系的影响主要是通过形态变化和在干旱胁迫下维持有利的叶片水分状况的生理需求来介导的。

著录项

  • 作者

    Engel, Victor Charles.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Environmental Sciences.; Agriculture Forestry and Wildlife.; Biophysics General.; Biology Plant Physiology.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 p.4568
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境科学基础理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号