首页> 外文学位 >Phosphate Sorption and Reductive Dissolution in Aluminum/Iron-Hydroxide Co-Precipitates.
【24h】

Phosphate Sorption and Reductive Dissolution in Aluminum/Iron-Hydroxide Co-Precipitates.

机译:铝/氢氧化铁共沉淀物中的磷酸盐吸附和还原溶解。

获取原文
获取原文并翻译 | 示例

摘要

Poorly-crystalline Al(III)- and Fe(III)-hydroxides have a high capacity to sorb orthophosphate (PO4). Due to the redox-active characteristic of Fe, fluctuation in redox potential might be one of the major factors influencing PO4 fate in soils and sediments. The goal of this research was to determine molecular mechanisms of PO4 retention and dissolution in non-crystalline Al(III)/Fe(III)-hydroxide co-precipitate systems as affected by dissimilatory microbial Fe(III) reduction. The specific objectives were: (1) to quantify the relative distribution of sorbed PO4 bonding between Al(III) and Fe(III) in relation to the structural properties of Al/Fe-hydroxide co-precipitates; (2) to determine how Al co-precipitation affects Fe(III) bioreducibility in relation to the local coordination structure and transformations in Fe-hydroxide domains; and (3) to characterize PO4 re-distribution between solid phases and aqueous solutions during bioreduction of Al/Fe-hydroxide co-precipitates. Phosphate sorption isotherms experiments at PO4 concentrations between 42 and 162 mmol mol-1 Al+Fe were conducted on Al/Fe-hydroxide co-precipitates with Al/(Al+Fe) molar ratios of 0, 20, 50, 75, and 100 mol%. Characterization using x-ray absorption near edge structure (XANES) spectroscopy shows preferential PO4 bonding to Al on co-precipitates containing ≤50 Al mol%, but a non-preferential PO4 distribution to either Al or Fe as Al proportion was increased to 75 mol%. Such PO4 distribution was correlated to the near-surface composition of Al as indicated by x-ray photoelectron spectroscopy (XPS). Along with increasing proportion of co-precipitated Al, trends in decreasing structural ordering and decreasing size of Fe domains were found. After 168 h of bioreduction promoted by Shewanella putrefaciens CN32, total Fe(II) production increased 40-fold as co-precipitated Al increased from 0 to 50 mol%. Over the course of bioreduction, Al tended to impede microbial-induced structural development in Fe domains. Apparently by optimizing surface interactions between bacterial cells and Fe(III)-hydroxides, increasing Al enhanced electron transfer between Fe(III) and microbes. Alternatively, bioreduction of phosphated Al/Fe-hydroxide co-precipitates was not only a function of Al proportion, but also a function of sorbed PO4 concentration. In co-precipitates with ≤20 mol% of Al, the Fe(III) bioreducibility increased with increasing sorbed PO4 concentration. Analogous to co-precipitated Al, PO 4 stabilized Fe domains against polymerization. For samples with ≥50 mol% of Al, however, effects of Al-hydroxide appeared to be greater than that of PO4, resulting in no effect of sorbed PO4 concentration on Fe(III) bioreducibility. During the 168-h bioreduction period, no reductive dissolution of PO4 was detected, contrary to my hypothesis. Availability of Al and Fe binding in residual solids during bioreduction accounted for PO4 retention. Accompanying enhanced Fe(III) bioreduction, an increase in Fe[(II)/(III)]-PO4 bonding was generally responsible for PO 4 sorption in systems with Al ≤20 mol%. As Al(III) became dominated (Al ≥50 mol%), however, a preferential PO4 bonding to Al was found in residual solids. Superior PO4 sorption capacity of Fe[(II)/(III)] and Al(III) polymers retained PO4 against other possible solid-phase retention pathways such as precipitation of biominerals or microbial uptake, and thereby constrained reductive PO4 dissolution. In general, my research showed that enhanced dissolution of PO4 observed under reducing soil conditions depends on processes other than direct release of PO4 into solution during reductive dissolution of Fe(III)-hydr(oxide) minerals.
机译:低结晶度的Al(III)-和Fe(III)-氢氧化物具有高吸附正磷酸盐(PO4)的能力。由于铁的氧化还原活性,氧化还原电位的波动可能是影响土壤和沉积物中PO4命运的主要因素之一。这项研究的目的是确定受异化微生物Fe(III)还原的影响,PO4在非晶体Al(III)/ Fe(III)-氢氧化物共沉淀系统中保留和溶解的分子机理。具体目标是:(1)量化Al(III)和Fe(III)之间吸附的PO4键相对于Al / Fe-氢氧化物共沉淀物的结构性能的相对分布; (2)确定Al共沉淀如何影响Fe(III)的生物还原性,与铁氢氧化物域的局部配位结构和转变有关; (3)表征在Al / Fe-氢氧化物共沉淀物的生物还原过程中固相和水溶液之间的PO4再分布。在Al / Fe-氢氧化物共沉淀物中,Al /(Al + Fe)摩尔比为0、20、50、75和100的情况下,在PO4浓度为42至162 mmol mol-1 Al + Fe之间进行磷酸盐吸附等温线实验摩尔%。使用X射线吸收近边缘结构(XANES)光谱进行的表征显示,当Al含量≤50 mol时,共沉淀物中Al与Al的优先键为PO4,但随着Al比例增加到75 mol,与Al或Fe的非优先PO4分布%。如X射线光电子能谱法(XPS)所示,这种PO4分布与Al的近表面组成相关。随着共沉淀Al比例的增加,发现了结构序减小和Fe域尺寸减小的趋势。在腐烂希瓦氏菌CN32促进的168小时生物还原后,由于共沉淀Al从0摩尔%增加到50摩尔%,总Fe(II)产量增加​​了40倍。在生物还原过程中,铝趋于阻碍微生物诱导的铁结构域结构的发展。显然,通过优化细菌细胞与氢氧化三价铁之间的表面相互作用,增加铝可增强三价铁与微生物之间的电子转移。或者,磷酸化的Al / Fe-氢氧化物共沉淀物的生物还原不仅是Al比例的函数,而且是吸附的PO4浓度的函数。在Al≤20 mol%的共沉淀物中,Fe(III)的生物还原性随吸附PO4浓度的增加而增加。类似于共沉淀的Al,PO 4稳定了Fe结构域以防止聚合。但是,对于Al≥50 mol%的样品,氢氧化铝的影响似乎大于PO4的影响,因此吸附的PO4浓度对Fe(III)的生物还原性没有影响。与我的假设相反,在168小时的生物还原期间,未检测到PO4的还原溶解。在生物还原过程中,残留固体中Al和Fe结合的有效性解释了PO4的保留。伴随着增强的Fe(III)生物还原,Fe [(II)/(III)]-PO4键的增加通常是Al≤20mol%的系统中PO 4吸附的原因。但是,随着Al(III)成为主要成分(Al≥50 mol%),在残余固体中发现了与Al的优先PO4键。 Fe [(II)/(III)]和Al(III)聚合物具有出色的PO4吸附能力,可以阻止PO4对抗其他可能的固相保留途径,例如生物矿物质的沉淀或微生物的吸收,从而限制了还原性PO4的溶解。总的来说,我的研究表明,在减少的土壤条件下观察到的PO4的增强溶解性取决于在还原Fe(III)-hydr(oxide)矿物时PO4直接释放到溶液中的过程。

著录项

  • 作者

    Liu, Yu Ting.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Agriculture Soil Science.;Environmental Sciences.;Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号