首页> 外文学位 >Numerical Methods for 3-dimensional Magnetic Confinement Configurations using Two-Fluid Plasma Equations.
【24h】

Numerical Methods for 3-dimensional Magnetic Confinement Configurations using Two-Fluid Plasma Equations.

机译:使用两流体等离子体方程的3维磁性约束构造的数值方法。

获取原文
获取原文并翻译 | 示例

摘要

The 5-moment two-fluid plasma model uses Euler equations to describe the ion and electron fluids, and Maxwell's equations to describe the electric and magnetic fields. Two-fluid physics becomes significant when the characteristic spatial scales are on the order of the ion skin depth and characteristic time scales are on the order of the inverse ion cyclotron frequency. The two-fluid plasma model has disparate characteristic speeds ranging from the ion and electron speeds of sound to the speed of light. In addition, the characteristic frequencies in the system are the ion and electron plasma frequency, and the ion and electron cyclotron frequency. Explicit and implicit time-stepping schemes are explored for the two-fluid plasma model to study the accuracy and computational effectiveness with which they could capture two-fluid physics. The explicit schemes explored include the high resolution wave propagation method (a finite volume method) and the Runge-Kutta discontinuous Galerkin (RKDG) method (a finite element method). The ideal two-fluid model is a purely dispersive equation system with no physical or artificial dissipation. The dispersions are physical effects responsible for the wide variety of plasma waves; they are not numerical artifacts. This sets the two-fluid plasma model apart from other equation systems. The finite volume and finite element methods are compared for accuracy and computational expense for applications of the two-fluid plasma model. For realistic regimes, the explicit time-step for the two-fluid plasma model can be very restrictive making it computationally expensive. This motivates the implicit time-stepping scheme. A semi-implicit two-fluid plasma model is developed using the discontinuous Galerkin method where the electron fluid equations and Maxwell's equations are evolved implicitly eliminating the restrictions set by the speed of light, and the electron plasma and cyclotron frequencies. Resolving all ion time-scales is a minimum to capture two-fluid physics, so the ion fluid equations are solved explicitly. This allows for accuracy and physics considerations alone to determine the time-step. Non-ideal terms are added to the two-fluid plasma model in the form of resistivity, viscosity, and heat flux to provide a self-consistent and physically relevant two-fluid plasma model and these are compared to solutions of the ideal two-fluid plasma model. The two-fluid plasma model is compared to the more commonly used Hall-MHD model for accuracy and computational effort using an explicit time-stepping scheme. Simulations of two-fluid instabilities in the Z-pinch and the field-reversed configuration are presented in 3-dimensions.
机译:5矩两流体等离子体模型使用Euler方程描述离子和电子流体,使用Maxwell方程描述电场和磁场。当特征空间尺度在离子趋肤深度的数量级上并且特征时间尺度在离子回旋加速器频率的数量级上时,二流体物理学变得非常重要。双流体等离子体模型具有不同的特征速度,范围从声音的离子速度和电子速度到光速。另外,系统中的特征频率是离子和电子等离子体频率,以及离子和电子回旋加速器频率。探索了两种流体等离子体模型的显式和隐式时间步长方案,以研究它们可以捕获双流体物理学的准确性和计算效率。探索的显式方案包括高分辨率波传播方法(有限体积方法)和Runge-Kutta不连续Galerkin(RKDG)方法(有限元方法)。理想的双流体模型是没有物理或人工耗散的纯色散方程系统。分散体是造成各种等离子波的物理效应。它们不是数值工件。这将双流体等离子体模型与其他方程组区分开来。比较了有限体积法和有限元法在双流体等离子体模型应用中的准确性和计算费用。对于现实的情况,双流体等离子体模型的显式时间步可能会非常严格,从而使其计算成本很高。这激发了隐式的时间步调方案。使用不连续的Galerkin方法建立了半隐式两流体等离子体模型,该模型隐含地演化了电子流体方程和麦克斯韦方程,消除了光速,电子等离子体和回旋加速器频率所设置的限制。解析所有离子时标是捕获双流体物理学的最低要求,因此可以明确求解离子流体方程。仅考虑准确性和物理因素即可确定时间步长。将非理想项以电阻率,粘度和热通量的形式添加到双流体等离子体模型中,以提供自洽且在物理上相关的双流体等离子体模型,并将这些与理想的双流体解决方案进行比较等离子模型。使用明确的时间步进方案,将两流体等离子体模型与更常用的Hall-MHD模型进行比较,以提高准确性和计算量。 Z夹点和场反向配置中的两种流体不稳定性的仿真以3维形式呈现。

著录项

  • 作者

    Srinivasan, Bhuvana.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 253 p.
  • 总页数 253
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号