首页> 外文学位 >Development of an implicitly coupled electromechanical and electromagnetic transients simulator for power systems.
【24h】

Development of an implicitly coupled electromechanical and electromagnetic transients simulator for power systems.

机译:开发用于电力系统的隐式耦合机电瞬变模拟器。

获取原文
获取原文并翻译 | 示例

摘要

The simulation of electrical power system dynamic behavior is done using transient stability simulators (TS) and electromagnetic transient simulators (EMT). A Transient Stability simulator, running at large time steps, is used for studying relatively slower dynamics e.g. electromechanical interactions among generators and can be used for simulating large-scale power systems. In contrast, an electromagnetic transient simulator models the same components in finer detail and uses a smaller time step for studying fast dynamics e.g. electromagnetic interactions among power electronics devices. Simulating large-scale power systems with an electromagnetic transient simulator is computationally inefficient due to the small time step size involved. A hybrid simulator attempts to interface the TS and EMT simulators running at different time steps. By modeling the bulk of the large-scale power system in a transient stability simulator and a small portion of the system in an electromagnetic transient simulator, the fast dynamics of the smaller area could be studied in detail, while providing a global picture of the slower dynamics for the rest of power system.;In the existing hybrid simulation interaction protocols, the two simulators run independently, exchanging solutions at regular intervals. However, the exchanged data is accepted without any evaluation, so errors may be introduced. While such an explicit approach may be a good strategy for systems in steady state or having slow variations, it is not an optimal or robust strategy if the voltages and currents are varying rapidly, like in the case of a voltage collapse scenario.;This research work proposes an implicitly coupled solution approach for the combined transient stability and electromagnetic transient simulation. To combine the two sets of equations with their different time steps, and ensure that the TS and EMT solutions are consistent, the equations for TS and coupled-in-time EMT equations are solved simultaneously. While computing a single time step of the TS equations, a simultaneous calculation of several time steps of the EMT equations is proposed.;Along with the implicitly coupled solution approach, this research work also proposes to use a three-phase representation of the TS network instead of using a positive-sequence balanced representation, as done in the existing transient stability simulators.;Furthermore a parallel implementation of the three-phase transient stability simulator and the implicitly coupled electromechanical and electromagnetic transients simulator, using the high performance computing library PETSc, is presented. Results of experimentation with different reordering strategies, linear solution schemes, and preconditioners are discussed for both sequential and parallel implementation.
机译:电力系统动态行为的仿真是使用瞬态稳定性仿真器(TS)和电磁瞬态仿真器(EMT)完成的。运行时间步长较大的瞬态稳定性模拟器用于研究相对较慢的动力学,例如发电机之间的机电相互作用,可用于模拟大型电力系统。相比之下,电磁瞬态模拟器更详细地对相同的组件建模,并使用较小的时间步长研究快速动态特性,例如电力电子设备之间的电磁相互作用。由于所涉及的时间步长小,因此使用电磁瞬态模拟器来模拟大型电力系统在计算上效率低下。混合模拟器尝试连接以不同时间步长运行的TS和EMT模拟器。通过在瞬态稳定性模拟器中对大型电力系统的大部分进行建模,并在电磁瞬态模拟器中对系统的一小部分进行建模,可以详细研究较小区域的快速动态,同时提供较慢区域的全局图在现有的混合仿真交互协议中,两个仿真器独立运行,并定期交换解决方案。但是,接受的交换数据无需任何评估,因此可能会引入错误。尽管这种明确的方法对于处于稳定状态或变化缓慢的系统可能是一个很好的策略,但如果电压和电流快速变化(例如在电压崩溃的情况下),则不是最佳或鲁棒的策略。这项工作提出了一种隐式耦合解决方案方法,用于组合瞬态稳定性和电磁瞬态仿真。为了将两组方程式及其不同的时间步长组合在一起,并确保TS和EMT解一致,可以同时求解TS方程和即时耦合EMT方程。在计算TS方程的单个时间步长的同时,提出了同时计算EMT方程几个时间步长的方法。沿着隐式耦合求解方法,本研究工作还建议使用TS网络的三相表示而不是像现有的暂态稳定度模拟器那样使用正序平衡表示。此外,使用高性能计算库PETSc,并行实现了三相暂态稳定度模拟器和隐式耦合的机电瞬变模拟器,被表达。讨论了针对顺序执行和并行执行的不同重排序策略,线性解决方案和前置条件的实验结果。

著录项

  • 作者

    Abhyankar, Shrirang.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号