首页> 外文学位 >Toward single-trial measurement of vibrotactile driving responses in EEG: New approaches based on multi-channel adaptive filtering.
【24h】

Toward single-trial measurement of vibrotactile driving responses in EEG: New approaches based on multi-channel adaptive filtering.

机译:迈向EEG中的触觉驱动反应的单次试验测量:基于多通道自适应滤波的新方法。

获取原文
获取原文并翻译 | 示例

摘要

Human somatosensory cortical neurons are entrained by vibratactile stimuli applied to the skin, and these population-level “driving” responses are reflected in the power spectrum of concurrently-recorded EEG. Our long term goal is to extract and measure these responses on a trial-by-trial basis, which will enable us to analyze relationships between neurophysiological and psychophysical responses to vibration. For this purpose we are exploring new approaches to measuring the neurophysiological response trial by trial, using multichannel adaptive filtering algorithms: Adaptive Line Enhancer (ALE) and Kalman filtering.; The EEG response to a vibrotactile stimulus is typically small relative to the background “noise”, so that filtering is necessary, and for this, the key is identify and exploit systematic differences between signal and noise. For example, if a signal is present on a single channel it will be correlated over a longer stretch of the time record than the noise in which it is embedded. The algorithms of Adaptive Line Enhancer and Kalman filter exploit this difference in two ways. The ALE exploits this by fitting the input signal to a copy of itself time-shifted by an amount which exceeds the correlation length of the noise. The Kalman filter estimates a process by using a form of feedback control: the filter estimates the process state at some time and then obtains feedback in the form of noisy measurements. Kalman filter is very powerful in several aspects: it supports estimations of past, present, and even future states, and it can do so even when the precise nature of the modeled system is unknown.; Multichannel ALE and multichannel Kalman are direct generalizations of single channel ALE and single channel Kalman, which exploits differences in both time and space. That is, it combines each channel being analyzed with as many as possible additional channels that contain correlated signal components but uncorrelated noise components. We evaluated this approach by embedding the filter algorithm within a control program that systematically generated combinations of its parameters and writes the results into SYSTAT filter, permitting statistical evaluation.; The research results show that Kalman filter performs uniformly superior to ALE. It has better filtering ability than Adaptive Line Enhancer. And it has better frequency tracking ability than Adaptive Line Enhancer. (Abstract shortened by UMI.)
机译:人类体感皮层神经元被施加在皮肤上的振动触觉刺激所夹带,这些人群水平的“驾驶”反应反映在同时记录的脑电图的功率谱中。我们的长期目标是在逐个试验的基础上提取和测量这些响应,这将使我们能够分析振动的神经生理反应和心理物理反应之间的关系。为此,我们正在探索使用多通道自适应滤波算法逐次测量神经生理反应的新方法:自适应线增强器(ALE)和卡尔曼滤波。相对于背景“噪声”,EEG对震动触觉刺激的响应通常较小,因此必须进行过滤,为此,关键是识别并利用信号与噪声之间的系统差异。例如,如果一个信号存在于单个通道中,则与在其中嵌入的噪声相比,它将在更长的时间记录范围内进行相关。自适应线路增强器和卡尔曼滤波器的算法以两种方式利用了这一差异。 ALE通过将输入信号拟合到自身时移副本的方式来利用这一点,该副本的时移量超过了噪声的相关长度。卡尔曼滤波器通过使用某种形式的反馈控制来估算过程:该滤波器在某个时间估算过程状态,然后以噪声测量的形式获得反馈。卡尔曼滤波器在多个方面都非常强大:它支持对过去,现在甚至未来状态的估计,即使在建模系统的确切性质未知的情况下,它也可以这样做。多通道ALE和多通道Kalman是单通道ALE和单通道Kalman的直接概括,它们利用了 时间和空间上的差异。即,它将每个正在分析的通道与尽可能多的包含相关信号分量但不相关噪声分量的附加通道组合在一起。我们通过将过滤器算法嵌入控制程序中来评估这种方法,该控制程序系统地生成了其参数的组合并将结果写入SYSTAT过滤器中,从而可以进行统计评估。研究结果表明,卡尔曼滤波器的性能始终优于ALE。它比自适应线路增强器具有更好的过滤能力。并且它具有比自适应线路增强器更好的频率跟踪能力。 (摘要由UMI缩短。)

著录项

  • 作者

    Xu, Min.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Engineering Biomedical.; Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号