首页> 外文学位 >Locally Adaptive Time Stepping in Numerical Simulations for Neuroscience.
【24h】

Locally Adaptive Time Stepping in Numerical Simulations for Neuroscience.

机译:神经科学数值模拟中的局部自适应时间步长。

获取原文
获取原文并翻译 | 示例

摘要

Ever since Hodgkin and Huxley first presented their model of neuronal activity, numerical simulations have played an important role in the field of neuroscience. Early work in the emerging field of computational neuroscience led to the development of techniques for solving the problem of action potential propagation along cables and through branched structures culminating in the widespread use of the Crank-Nicolson method and ordering scheme developed by Hines and incorporated into the NEURON simulation environment. As the available numerical packages improved, the range and scale of computational simulations continues to grow.;The work presented in this dissertation departs from the conventional methods in many respects. The Crank-Nicolson scheme is abandoned in favor of the more stable Backwards Differentiation Formula, and the computational domain is divided into distinct subdomains using a simple domain decomposition scheme. Each subdomain is then updated independently using an adaptive time stepping scheme with the local time step determined by the level of local activity. In this locally adaptive time stepping scheme, regions experiencing high levels of activity are updated with a small time step, while regions that evolve slowly are updated using a much larger time step. Unlike other applications of adaptive time stepping, where the entire domain is updated using a globally selected time step, the locally adaptive time stepping scheme focuses computational power where it is most needed: the regions of high activity.;The locally adaptive time stepping scheme described in this dissertation is not restricted to the unique problems found in computational neuroscience, but can be easily adapted to any reaction-diffusion system, and extended to higher dimensions. While there is some computational overhead due to the domain decomposition scheme and step size selection, the focused use of computational resources provides sufficient increases in computational speed to compensate, especially for simulations on large spatial domains with highly localized pockets of activity.
机译:自从霍奇金(Hodgkin)和赫their黎(Huxley)首次提出他们的神经元活动模型以来,数值模拟在神经科学领域中发挥了重要作用。在计算神经科学新兴领域的早期工作导致了解决沿电缆和分支结构传播动作电位传播问题的技术的发展,最终导致了由Hines开发并并入Hans的Crank-Nicolson方法和排序方案的广泛使用。 NEURON模拟环境。随着现有数值软件包的改进,计算仿真的范围和规模不断扩大。本文的工作在很多方面都偏离了传统方法。放弃了Crank-Nicolson方案,转而采用更稳定的向后微分公式,并且使用简单的域分解方案将计算域划分为不同的子域。然后,使用自适应时间步进方案独立更新每个子域,其中本地时间步长由本地活动的级别确定。在这种本地自适应时间步长方案中,活动水平高的区域以较小的时间步长进行更新,而速度缓慢发展的区域则以较大的时间步长进行更新。与其他使用自适应时间步长的应用程序不同,在整个应用程序中使用全局选定的时间步长更新整个域的情况下,本地自适应时间步长方案将计算能力集中在最需要的地方:活动频繁的区域。本文不限于计算神经科学中发现的独特问题,而是可以很容易地适应任何反应扩散系统,并扩展到更高的维度。尽管由于域分解方案和步长选择而导致一些计算开销,但是对计算资源的集中使用可提供足够的计算速度提高以进行补偿,尤其是对于具有高度局部活动区域的大型空间域的仿真而言。

著录项

  • 作者

    Kublik, Richard Alexander.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Biology Neuroscience.;Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 88 p.
  • 总页数 88
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号