首页> 外文学位 >Development of an unconditionally stable finite-difference time-domain method for electromagnetic modeling and applications.
【24h】

Development of an unconditionally stable finite-difference time-domain method for electromagnetic modeling and applications.

机译:电磁建模和应用的无条件稳定有限差分时域方法的发展。

获取原文
获取原文并翻译 | 示例

摘要

Maxwell's equations, which represent a fundamental relationship between electric and magnetic fields, have been studied for decades. Although the analytical solutions have been given for analyzing many microwave structures, it is difficult to obtain them for predicting field behaviors in complex structures with composite materials. Consequently, numerical techniques have been studied, applied and proven to be effective in both time domain and frequency domain. With the particular desire of obtaining the full wave analysis for the microwave devices in an efficient manner, researchers have been driven into finding novel time domain techniques. The Finite-difference Time-domain (FDTD) method was then developed and has been extensively investigated and employed in solving electromagnetic problems due to its simplicity, effectiveness and flexibility. It has become one of the most popular time-domain methods so far. For the electrically large structures and highly conductive materials, however, the FDTD algorithm requires large computation resources and prohibitively long simulation time owing to its two inherent limits: dispersion errors and Courant Friedrich-Levy (CFL) stability condition. Several FDTD-based algorithms, aiming at removing or alleviating the two constraints, have been recently developed. They include multiresolution time-domain (MRTD) method and pseudospectral time-domain (PSTD) method for reduction of numerical dispersion, and alternating direction implicit FDTD (ADI-FDTD) method for complete removal of CFL condition.; So far, the ADI-FDTD method has been applied only to the Cartesian coordinates system. As well, its exclusive advantages have not been fully explored in solving practical electromagnetic problems. In this thesis, the newly developed three-dimensional ADI-FDTD method in the cylindrical coordinates system is presented for effectively analyzing cylindrical microwave devices, especially body of rotational (BOR) structures.; To further demonstrate the exclusive advantages of the ADI-FDTD method in solving practical electromagnetic problems, two resonant structures with conductive materials have been computed with the proposed method. A modified ADI-FDTD method in cylindrical coordinates system is specifically derived for solving highly conductive materials.; Finally, the ADI-FDTD algorithm is successfully combined with the popular absorbing boundary conditions (ABCs) for simulating open strictures. (Abstract shortened by UMI.)
机译:代表电场和磁场之间基本关系的麦克斯韦方程组已经研究了数十年。尽管已经给出了用于分析许多微波结构的分析解决方案,但是很难获得用于预测具有复合材料的复杂结构中的场行为的方法。因此,数值技术已被研究,应用并证明在时域和频域均有效。为了以有效的方式获得微波设备的全波分析,人们迫切希望找到新的时域技术。有限差分时域(FDTD)方法随后被开发出来,由于其简单,有效和灵活,已被广泛研究和用于解决电磁问题。到目前为止,它已成为最受欢迎的时域方法之一。但是,对于电结构较大且导电性高的材料,FDTD算法由于其两个固有的局限性:色散误差和Courant Friedrich-Levy(CFL)稳定性条件,因此需要大量的计算资源和过长的仿真时间。最近已经开发了几种基于FDTD的算法,旨在消除或减轻这两个约束。它们包括用于减少数值离散的多分辨率时域(MRTD)方法和伪谱时域(PSTD)方法,以及用于完全消除CFL条件的交替方向隐式FDTD(ADI-FDTD)方法。到目前为止,ADI-FDTD方法仅应用于笛卡尔坐标系。同样,在解决实际的电磁问题中还没有充分地探索其独有的优势。本文提出了在圆柱坐标系中最新开发的三维ADI-FDTD方法,以有效地分析圆柱微波器件,特别是旋转(BOR)结构体。为了进一步证明ADI-FDTD方法在解决实际电磁问题方面的独有优势,使用该方法计算了两个带有导电材料的谐振结构。专门提出了一种改进的圆柱坐标系中的ADI-FDTD方法来求解高导电材料。最后,将ADI-FDTD算法与流行的吸收边界条件(ABC)成功地结合起来,用于模拟开放狭窄。 (摘要由UMI缩短。)

著录项

  • 作者

    Yuan, Chenghao.;

  • 作者单位

    Dalhousie University (Canada).;

  • 授予单位 Dalhousie University (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号