首页> 外文学位 >Oxidatively-modified proteins: I. Proteomic identification of specifically-oxidized proteins in Alzheimer's disease brain. II. Modulation of synaptosomal membrane lipid bilayer asymmetry by 4-hydroxy-2-trans-nonenal.
【24h】

Oxidatively-modified proteins: I. Proteomic identification of specifically-oxidized proteins in Alzheimer's disease brain. II. Modulation of synaptosomal membrane lipid bilayer asymmetry by 4-hydroxy-2-trans-nonenal.

机译:氧化修饰的蛋白质:I.阿尔茨海默氏病脑中特定氧化蛋白质的蛋白质组学鉴定。二。突触体膜脂质双层不对称的4-羟基-2-反式壬醛的调节。

获取原文
获取原文并翻译 | 示例

摘要

The studies described is this dissertation were performed with the intent of investigating the role of oxidative stress as a relevant event in Alzheimer's disease (AD). AD is a neurodegenerative disorder associated with age, which results in loss of memory and cognitive function. Extensive experimental evidence indicates that oxidative stress might play an important role in modulating the degenerative events characteristic of this disorder. Reaction of radical species might occur close to the site of formation or in different locations, and results in attack on proteins, lipids and DNA. The subsequent oxidative damage to these biomolecules is particularly pronounced in the brain, due to its high oxygen consumption and lower antioxidant defense.; It has been demonstrated that protein oxidation often results in loss in protein function. Introduction of protein carbonyls and nitration of tyrosine, markers of protein oxidation, even on few key amino acids, inevitably change the protein conformation, which is often a cause for its dysfunction. Identification of these targets of protein oxidation would represent very valuable evidence toward the understanding of how oxidative stress modulates cellular life at a protein level. Discovery of which protein is selectively oxidized in AD brain may provide deep insights into the oxidation-related mechanism of neurodegeneration, in which a few key oxidized proteins are not capable of expleting their function and thus impair the metabolic, signaling pathway, structural maintenance or antioxidant function they modulate.; The introduction of proteomics techniques has allowed a relatively easy approach to investigate these targets. It couples 2-dimensional polyacrilamide electrophoresis (2D-PAGE) and mass spectrometry (MS) analysis, which help in elucidating the dynamism of cellular systems by studying the products of genes, proteins, and their structure, function, localization and thus modification in condition of disease. Identification of oxidized protein in AD is a proteomic achievement toward understanding of the role of oxidative stress in AD brain and shows the potentiality of proteomics in providing important information in condition of disease. Collection of this information offers the opportunity to study mechanisms of disease, conditions in which proteins are often involved in pathological events, and the identification of new potential therapeutic targets. In our studies, proteomics is also applied to study the consequences of a dysfunctional protein that has been identified as target of protein oxidation in AD brain, in an animal model of disease. This has been achieved by proteomic analysis of the GAD mouse.; Oxidative damage occurs also in brain lipids, that relates to apoptosis in AD, and leads to production of reactive aldehydes, among which 4-hydroxynonenal (HNE) and acrolein. This dissertation also investigates the effects of HNE and acrolein, lipid peroxidation products, in the maintenance of phospholipid asymmetry in synaptic membranes.; The data collected for this dissertation provide additional evidence sustaining the oxidative stress hypothesis in AD.
机译:本文描述的研究是为了研究氧化应激作为阿尔茨海默氏病(AD)相关事件的作用而进行的。 AD是与年龄有关的神经退行性疾病,其导致记忆力和认知功能丧失。大量的实验证据表明,氧化应激可能在调节这种疾病的变性事件中起重要作用。自由基物种的反应可能发生在形成位置附近或不同位置,并导致对蛋白质,脂质和DNA的攻击。对这些生物分子的后续氧化损伤在大脑中尤为明显,因为其耗氧量高且抗氧化剂防御能力低。已经证明蛋白质氧化经常导致蛋白质功能丧失。蛋白质羰基的引入和酪氨酸的硝化,蛋白质氧化的标志物(即使在几个关键氨基酸上)也不可避免地改变了蛋白质构象,这通常是其功能障碍的原因。这些蛋白质氧化目标的识别将为理解氧化应激如何在蛋白质水平上调节细胞生命提供非常有价值的证据。发现哪种蛋白质在AD大脑中被选择性氧化,可能为深入了解与神经变性相关的氧化相关机制,其中一些关键的氧化蛋白质无法发挥其功能,从而损害代谢,信号传导途径,结构维持或抗氧化剂他们调制的功能。蛋白质组学技术的引入使研究这些靶标的方法相对容易。它结合了二维聚丙烯酰胺电泳(2D-PAGE)和质谱(MS)分析,可通过研究基因,蛋白质的产物及其结构,功能,定位和条件修饰来帮助阐明细胞系统的活力。疾病识别AD中的氧化蛋白是蛋白质组学的一项成就,有助于理解AD大脑中氧化应激的作用,并表明蛋白质组学在提供疾病状况重要信息方面的潜力。收集这些信息为研究疾病的机制,蛋白质经常参与病理事件的条件以及确定新的潜在治疗靶标提供了机会。在我们的研究中,蛋白质组学还被用于研究疾病动物模型中功能失调的蛋白质(已被确定为AD脑中蛋白质氧化的靶标)的后果。这是通过GAD小鼠的蛋白质组学分析实现的。氧化损伤也发生在脑脂质中,这与AD中的细胞凋亡有关,并导致产生反应性醛,其中包括4-羟基壬烯醛(HNE)和丙烯醛。本文还研究了HNE和丙烯醛,脂质过氧化产物在维持突触膜磷脂不对称性方面的作用。本论文收集的数据提供了支持AD氧化应激假设的其他证据。

著录项

  • 作者

    Castegna, Alessandra.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Chemistry Biochemistry.; Health Sciences Pathology.; Biology Molecular.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;病理学;分子遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号