首页> 外文学位 >Numerical validation and refinement of empirical rock mass modulus estimation.
【24h】

Numerical validation and refinement of empirical rock mass modulus estimation.

机译:经验岩体模量估计的数值验证和改进。

获取原文
获取原文并翻译 | 示例

摘要

A sound understanding of rock mass characteristics is critical for the engineering prediction of tunnel stability and deformation both during construction and post-excavation. The rock mass modulus of deformation is a necessary input parameter for many numerical analysis methods to describe the constitutive behavior of a rock mass. Tests for determining this parameter directly by in situ test methods are inherently difficult, time consuming and expensive, and these challenges are more problematic when dealing with tunnels in weaker, softer rock masses where errors in modulus (stiffness) estimation have a profound impact on closure predictions. In addition, rock masses with modest structure can be candidate sites for highly sensitive structures such as nuclear waste repository tunnels. For these generally stiffer rock masses, the correct modulus assessment is essential for prediction of thermal response during the service life of the tunnel.;Numerous empirical relationships based on rock mass classification schemes have been developed to determine rock mass deformation modulus in response to these issues. The empirical relationship provided by Hoek & Diederichs (2006) based on Geological Strength Index (GSI) has been determined from a database of in situ test data describing a wide range of rock masses with GSI values greater than 25 and less than 80. Within this range of applications there is a large variation in measured values compared to the predicted relationship and predictive uncertainty at low GSI values. In this research, a practical range of rock mass quality, as defined by GSI, including "BlockyDisturbedSeamy" rock masses, "Very Blocky" and relatively competent rock masses are analyzed using discretely fractured numerical models. In particular the focus is on tunnel response. Tunnel closure in these simulations is compared to predictions based on modulus estimates. The proposed refinement to the Generalized Hoek-Diederichs relationship is made on the basis of these simulations for tunnelling applications.
机译:正确理解岩体特征对于工程预测施工和开挖后的隧道稳定性和变形至关重要。岩体变形模量是描述岩体本构特性的许多数值分析方法的必要输入参数。直接通过原位测试方法确定该参数的测试固有地困难,耗时且昂贵,并且在处理软弱,较软的岩体中的隧道时,这些挑战更加棘手,因为在这些隧道中,模量(刚度)的估计误差对封闭性有深远影响预测。此外,结构适度的岩体可能是高度敏感结构(如核废料处置库隧道)的候选地点。对于这些通常较坚硬的岩体,正确的模量评估对于预测隧道使用寿命期间的热响应至关重要。;已经开发了基于岩体分类方案的多种经验关系式,以响应这些问题确定岩体变形模量。 Hoek&Diederichs(2006)根据地质强度指数(GSI)提供的经验关系已从现场测试数据数据库中确定,该数据库描述了GSI值大于25且小于80的各种岩体。应用范围与低GSI值下的预测关系和预测不确定性相比,测量值存在较大差异。在这项研究中,使用离散裂缝数值模型分析了GSI定义的实际岩体质量范围,包括“ BlockyDisturbedSeamy”岩体,“ Very Blocky”岩体和相对称职的岩体。特别地,重点是隧道响应。将这些模拟中的隧道闭合与基于模量估计的预测进行比较。在这些用于隧道应用的模拟的基础上,对广义Hoek-Diederichs关系进行了改进。

著录项

  • 作者

    Hume, Colin David.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Engineering Geological.
  • 学位 M.Sc.
  • 年度 2011
  • 页码 264 p.
  • 总页数 264
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号