首页> 外文学位 >Networks-on-Chip: Modeling, System-Level Abstraction, and Application-Specific Architecture Customization.
【24h】

Networks-on-Chip: Modeling, System-Level Abstraction, and Application-Specific Architecture Customization.

机译:片上网络:建模,系统级抽象和特定于应用程序的体系结构定制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation proposes different methodologies, with their associated models, to customize the architectural design of Application-Specific Networks-on-Chip (ASNoC). Specifically, system-level evaluation models are presented and architecture generation methodologies are built on them to allow the designer to generate the most efficient architecture for a given NoC-based application. Our system-level methodologies enable the designer to discover any flaws early during the design process and to quickly investigate the effect of various design choices on the resultant NoC cost and performance. In this dissertation, we have four main contributions.;In our first contribution, we propose power and reliability evaluation models. The two models are proposed at the system-level to allow for a quick evaluation of different design decisions. The power model captures the power consumption in NoC routers and links, whereas the reliability one models the probability of the packets being affected by on-chip noise sources.;In our second contribution, we propose a cost-efficient architecture generation methodology for NoC based on network partitioning techniques. Our methodology partially customizes the on-chip network architecture with respect to two cost metrics: power and area. The partitioning technique is formulated using NoC terminology based on the Fiduccia-Mattheyses graph partitioning algorithm. Our partitioning scheme is compared to other partitioning techniques and is found to be the most efficient one for NoC. We further analyze the effect of using network partitioning on NoC power, area, and delay. From this analysis, the area reduction is proved to be guaranteed using network partitioning. Moreover, power and delay efficiencies of using network partitioning with NoC are formulated mathematically. Experimental results show that the proposed methodology is an efficient way to reduce power and area costs of NoC with respect to both standard and previous custom architecture generation techniques.;In our third contribution, we propose a multi-objective Genetic Algorithm (GA)-based optimization methodology for NoC full-custom architectures. For any application, the designer could control the optimization process through different optimization weight factors. Our methodology is evaluated by applying it to different NoC benchmark applications, as case studies. Results show that the architectures generated by our methodology outperform those generated by other techniques with respect to power, area, delay, reliability, and the combination of the four metrics. Finally, the running time of our methodology is an order of magnitude faster than that of previous architecture optimization techniques.;In our fourth contribution, we propose a multi-objective GA-based methodology to optimize the use of standard architectures, which were previously presented in computer network, with NoC. Our methodology combines the best selection of NoC standard architecture and the optimum mapping of application cores onto that architecture. The methodology is further used to carry out an application-specific mapping-oriented evaluation of different NoC standard architectures. Experimental results show that the mapping achieved by our methodology outperforms those generated by previous mapping techniques with respect to power, area, delay, reliability, and the combination of the four metrics.;This research work aims at quickly validating various design decisions by proposing system-level power and reliability evaluation models. Moreover, in this dissertation, we present three application-specific methodologies to customize the three main categories of architectures that are currently used in implementing on-chip networks; namely, semi-custom, full-custom, and standard architectures, respectively. Our methodologies consider different NoC metrics: power, area, delay, and reliability, simultaneously. We believe that our proposed methodologies bridge an open gap in NoC research by matching the on-chip network architecture to the characteristics and the rapidly growing requirements of modern NoC applications.
机译:本文提出了不同的方法及其相关模型,以定制专用芯片网络(ASNoC)的体系结构设计。具体来说,提出了系统级评估模型,并在其上构建了体系结构生成方法,以使设计人员能够为给定的基于NoC的应用程序生成最有效的体系结构。我们的系统级方法使设计师能够在设计过程的早期发现任何缺陷,并快速调查各种设计选择对最终NoC成本和性能的影响。本文主要有四个方面的贡献。在第一个方面,我们提出了功率和可靠性评估模型。在系统级别提出了这两种模型,以便快速评估不同的设计决策。功耗模型捕获了NoC路由器和链路中的功耗,而可靠性模型则对数据包受片上噪声源影响的概率进行了建模;在第二项研究中,我们为基于NoC的架构提出了一种经济高效的体系结构生成方法关于网络分区技术。我们的方法相对于两个成本指标(功率和面积)部分定制了片上网络架构。基于Fiduccia-Mattheyses图分区算法,使用NoC术语制定了分区技术。我们的分区方案与其他分区技术进行了比较,发现它是NoC效率最高的方案。我们进一步分析了使用网络分区对NoC功率,面积和延迟的影响。从该分析可以证明,使用网络分区可以保证减少面积。此外,使用NoC进行网络分区的功率和延迟效率是数学公式化的。实验结果表明,相对于标准和以前的自定义体系结构生成技术,该方法是一种降低NoC功耗和面积成本的有效方法。在我们的第三项贡献中,我们提出了一种基于多目标遗传算法(GA)的方法。 NoC全定制架构的优化方法。对于任何应用,设计人员都可以通过不同的优化权重因子来控制优化过程。作为案例研究,我们将其应用于不同的NoC基准应用程序进行了评估。结果表明,就功耗,面积,延迟,可靠性以及这四个指标的组合而言,我们的方法所生成的体系结构优于其他技术所生成的体系结构。最后,我们的方法的运行时间比以前的体系结构优化技术快一个数量级。在我们的第四篇论文中,我们提出了一种基于多目标GA的方法,用于优化标准体系结构的使用,前面已经介绍过在计算机网络中,使用NoC。我们的方法结合了NoC标准架构的最佳选择和应用程序内核到该架构的最佳映射。该方法还用于对不同的NoC标准架构进行针对特定应用的面向映射的评估。实验结果表明,在功率,面积,延迟,可靠性以及这四个指标的组合方面,我们的方法所实现的映射性能优于先前的映射技术。本研究旨在通过提出系统快速验证各种设计决策级功率和可靠性评估模型。此外,在本文中,我们提出了三种专用方法来定制当前用于实现片上网络的三种主要类别的体系结构。即半定制,全定制和标准体系结构。我们的方法同时考虑了不同的NoC指标:功率,面积,延迟和可靠性。我们相信,通过将片上网络架构与现代NoC应用的特性和快速增长的需求相匹配,我们提出的方法可以弥合NoC研究中的空白。

著录项

  • 作者单位

    University of Victoria (Canada).;

  • 授予单位 University of Victoria (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号