首页> 外文学位 >Post-translational modification of the large subunit (LS) and small subunit (SS) of Rubisco and the molecular utility of Rubisco LSMT to deliver carbonic anhydrase to the active site vicinity of Rubisco.
【24h】

Post-translational modification of the large subunit (LS) and small subunit (SS) of Rubisco and the molecular utility of Rubisco LSMT to deliver carbonic anhydrase to the active site vicinity of Rubisco.

机译:Rubisco的大亚基(LS)和小亚基(SS)的翻译后修饰以及Rubisco LSMT的分子效用,可将碳酸酐酶递送至Rubisco的活性位点附近。

获取原文
获取原文并翻译 | 示例

摘要

Research endeavors were first directed to obtain a Rubisco alpha N-methyltransferase (SSMT) enzyme source of high purity in order to characterize the enzyme responsible for methylation of the processed form of Rubisco SS. A partially purified enzyme was obtained, and used to conduct a brief biochemical characterization of Rubisco SSMT activity. Next, in an effort to evaluate the in vivo consequences of formation of trimethyllysine-14 in the large subunit (LS) of Rubisco, a cDNA for pea Rubisco large subunit epsilonN-Methyltransferase (Rubisco LSMT) was introduced into wheat, a species that normally contains des (methyl) Rubisco, and also the modification at trimethyllysine-14 was removed in vivo from tobacco Rubisco by RNAi-mediated gene silencing. The introduction of pea Rubisco LSMT into wheat plants with des (methyl) Rubisco resulted in the stoichiometric formation of a trimethyllysyl residue at position 14 in the LS, and Rubisco LSMT was removed from tobacco plants which resulted in the absence of formation of trimethyllysine-14 in the LS. Additionally, these experiments provide facile access to a novel form of Rubisco altered by in vivo protein processing events. Finally, a human form of carbonic anhydrase (hCAII) was chemically cross-linked with pea Rubisco LSMT. The complex between hCAII and Rubisco LSMT retained the tight and specific binding affinity for Rubisco. Moreover, binding of this complex to Rubisco, and the localization of carbonic anhydrase to the active site vicinity of Rubisco, resulted in a significant increase in the carboxylation efficiency of Rubisco manifested as a decrease in the KM (CO2) from 35 muM to 7.9 muM. These results suggest that the limitations on carbon fixation in C3 plants imposed by Rubisco activity may be surmountable in vivo.
机译:首先要进行研究,以获得高纯度的RubiscoαN-甲基转移酶(SSMT)酶源,以表征负责Rubisco SS加工形式甲基化的酶。获得了部分纯化的酶,并用于进行Rubisco SSMT活性的简短生化表征。接下来,为了评估在Rubisco大亚基(LS)中形成三甲基赖氨酸14的体内后果,将豌豆Rubisco大亚基εN-甲基转移酶(Rubisco LSMT)的cDNA引入小麦,该小麦通常是含有去甲基(甲基)Rubisco,并且通过RNAi介导的基因沉默从烟草Rubisco体内去除了三甲基赖氨酸-14上的修饰。将豌豆Rubisco LSMT引入具有去甲基(甲基)Rubisco的小麦植株中,导致化学计量形成LS中14位的三甲基赖氨酸残基,并且Rubisco LSMT从烟草植株中移出,导致不形成三甲基赖氨酸14在LS中。另外,这些实验提供了通过体内蛋白质加工事件改变的新型Rubisco形式的便捷途径。最后,人类形式的碳酸酐酶(hCAII)与豌豆Rubisco LSMT化学交联。 hCAII和Rubisco LSMT之间的复合物保留了对Rubisco的紧密和特异性结合亲和力。此外,这种复合物与Rubisco的结合以及碳酸酐酶在Rubisco活性位点附近的定位导致Rubisco的羧化效率显着提高,这表明KM(CO2)从35μM降低至7.9μM。 。这些结果表明,Rubisco活性对C3植物碳固定的限制可能在体内可以克服。

著录项

  • 作者

    Meier, Brent W.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Biology Plant Physiology.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 植物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号