首页> 外文学位 >Issues surrounding fracturing of geothermal systems - Predicting thermal conductivity of reservoir rocks and evaluating performance of fracture proppants.
【24h】

Issues surrounding fracturing of geothermal systems - Predicting thermal conductivity of reservoir rocks and evaluating performance of fracture proppants.

机译:围绕地热系统破裂的问题-预测储层岩石的热导率并评估压裂支撑剂的性能。

获取原文
获取原文并翻译 | 示例

摘要

Traditional geothermal systems have been limited to geologic systems in which elevated temperatures, abundant water, and high porosity and permeability are found. Engineered geothermal systems (EGS) have been proposed for thermal reservoirs in which insufficient water and/or permeability are present. The EGS model calls for the creation of large fracture networks which penetrate the hot rock resource. These fracture networks are formed by reopening sealed fractures or by creating new fractures using hydraulic fracturing methods common to the oil and gas industry. Application of hydraulic fracturing technologies in geothermal systems and operation of engineered geothermal systems present new issues including the formation of thermal fractures due to temperature differentials and rock shrinkage; and the performance of hydraulic fracturing materials such as proppants under geothermal conditions.;The formation of thermal fractures in a geothermal reservoir will be governed by the thermophysical properties of the reservoir rock, including heat capacity, thermal conductivity, coefficient of thermal expansion, etc. Thermal conductivity may be estimated using data obtained from geophysical well logs. Multivariate data analysis methods such as principal components analysis and regression analysis have been used to interpret log data. Significant discrepancies between experimentally-determined thermal conductivity and model-derived thermal conductivity were noted. Possible sources of the discrepancies include rock anisotropy and insufficient data. However, principal components analysis proved to be a valuable resource for data interpretation.;The resilience of proppants under geothermal conditions was evaluated. Three proppant types were tested in the presence of water and crushed granite at elevated temperatures for periods up to 11 weeks. Sintered bauxite proppant was found to be susceptible to dissolution in hot geothermal water. Quartz sand proppant and resin-coated bauxite proppant appeared to experience less dissolution. Sintered bauxite and resin-coated bauxite proppants were crush tested both before and after exposure to geothermal conditions and the resistance of the proppants to crushing remained unchanged. Based on the testing regime, resin-coated bauxite proppant appears to be well-suited for use in engineered geothermal systems.
机译:传统的地热系统仅限于发现高温,丰富的水以及高孔隙率和渗透率的地质系统。已经提出了针对存在水和/或渗透性不足的储层的工程地热系统(EGS)。 EGS模型要求创建穿透热岩资源的大型裂缝网络。这些裂缝网络是通过重新打开密封裂缝或通过使用石油和天然气行业常用的水力压裂方法产生新裂缝而形成的。水力压裂技术在地热系统中的应用以及工程地热系统的运行提出了新的问题,包括由于温度差异和岩石收缩引起的热裂缝的形成。地热储层中热裂缝的形成将取决于储层岩石的热物理性质,包括热容量,热导率,热膨胀系数等。可以使用从地球物理测井中获得的数据来估算热导率。多变量数据分析方法(例如主成分分析和回归分析)已用于解释日志数据。注意到实验确定的热导率与模型得出的热导率之间存在显着差异。差异的可能来源包括岩石各向异性和数据不足。然而,主成分分析被证明是用于数据解释的有价值的资源。;评估了地热条件下支撑剂的弹性。在水和压碎花岗岩存在下,在升高的温度下测试了三种支撑剂类型,长达11周。发现烧结铝土矿支撑剂易溶于热水。石英砂支撑剂和树脂包覆的铝土矿支撑剂似乎溶解较少。在暴露于地热条件之前和之后均对烧结铝土矿和树脂包覆的铝土矿支撑剂进行了压碎测试,支撑剂的抗压碎性保持不变。根据测试方案,树脂包覆的铝土矿支撑剂似乎非常适合用于工程地热系统。

著录项

  • 作者

    Brinton, Daniel.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Geological.
  • 学位 M.S.
  • 年度 2011
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号