首页> 外文学位 >Fuel processing for fuel cells: Preferential oxidation (PROX) of carbon monoxide from practical reformates for PEM hydrogen-oxygen fuel cells using high contacting efficiency microfibrous entrapped catalysts.
【24h】

Fuel processing for fuel cells: Preferential oxidation (PROX) of carbon monoxide from practical reformates for PEM hydrogen-oxygen fuel cells using high contacting efficiency microfibrous entrapped catalysts.

机译:燃料电池的燃料处理:使用高接触效率的微纤维夹带催化剂,对PEM氢氧燃料电池的实际重整产品进行一氧化碳的优先氧化(PROX)。

获取原文
获取原文并翻译 | 示例

摘要

Preferential oxidation (PROX) of CO in H2 is believed to be the most efficient way to remove CO from practical reformate streams for Polymer Electrolyte Membrane (PEM) fuel cells. Pt/Al2O3 has long been known as a suitable catalyst for this purpose. Over a conventional Pt/Al2O3 catalyst, however, preferential oxidation of CO in H2 is known to occur at temperatures above 150°C, and the maximum CO conversion usually takes place at around 200°C. In this study, modification of Pt/Al2O3 with a transition metal resulted in significantly enhanced catalytic performance for preferential CO oxidation from practical reformates in the temperature range of 25 to 150°C. The active reaction temperature window was enlarged to 25--200°C, compared to the narrow window at around 200°C using the conventional Pt/Al 2O3. Differential reactor studies, hydrogen and oxygen chemisorption, X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), in-situ Fourier transform infrared spectroscopy (FTIR) and temperature programmed reduction (TPR) studies were performed to characterize the newly developed promoted catalysts. Microstructured materials have potential for enhanced mass and heat transfer compared to the typical catalyst particulates used in industrial processes. Microfiber composite materials made by a wet lay paper-making/sintering process can incorporate particles as small as 10mum into a micrometal fiber matrix. Traditional high speed and low cost paper making equipment and techniques were used in this study to prepare composite materials and Pt-Co/Al2O3 catalysts that were identified, by both integral and differential reactor studies, to be superior candidates for preferential oxidation of CO and entrapped into the microfibrous materials. The microfibrous entrapped catalyst bed was then compared with conventional packed beds of same and larger catalyst particulates. A microfibrous entrapped H2S sorbent layer was placed upstream of the microfibrous entrapped PROX catalyst layer to remove both H2S and CO from a sulfur-contaminated model reformate stream. The outermost H2S sorbent layer thus promotes the activity maintenance of a secondary non-poison tolerant PROX CO catalyst, which ultimately serves to maintain the activity of a CO-intolerant precious metal based MEA assembly. Finally, mathematical modeling utilizing plug flow reactor equations was used to construct a PROX reaction map by which two competing reaction rate constants for CO and H2 oxidations can be determined by collecting a pair of CO conversion and O2 selectivity values with minimal experimental effort.
机译:氢气中的CO优先氧化(PROX)被认为是从高分子电解质膜(PEM)燃料电池的实际重整产品物流中去除CO的最有效方法。长期以来,已知Pt / Al 2 O 3是用于此目的的合适催化剂。然而,已知在常规的Pt / Al2O3催化剂上,H2中的CO优先氧化会在150°C以上的温度下发生,并且最大的CO转化率通常发生在200°C左右。在这项研究中,用过渡金属修饰Pt / Al2O3可以显着提高催化性能,在25至150°C的温度范围内,实际重整产品可优先进行CO氧化。与使用常规Pt / Al 2O3在200°C左右的窄窗口相比,活性反应温度窗口扩大到25--200°C。进行了差分反应器研究,氢和氧化学吸附,X射线衍射(XRD),能量色散X射线光谱法(EDS),原位傅立叶变换红外光谱(FTIR)和程序升温还原(TPR)研究以表征新开发的促进催化剂。与工业过程中使用的典型催化剂微粒相比,微结构材料具有提高质量和传热的潜力。通过湿法抄纸/烧结工艺制成的超细纤维复合材料可将小至10mum的颗粒掺入微金属纤维基质中。本研究使用传统的高速,低成本造纸设备和技术来制备复合材料和Pt-Co / Al2O3催化剂,这些催化剂通过积分反应器和差分反应器研究均被确定为优先选择CO和截留CO的优良候选者。进入微纤维材料。然后将微纤维夹带的催化剂床与相同和较大催化剂颗粒的常规填​​充床进行比较。将夹有微纤维的H2S吸附剂层置于夹有微纤维的PROX催化剂层的上游,以从被硫污染的模型重整产品物流中除去H2S和CO。因此,最外层的H2S吸附剂层促进了第二种耐毒药的PROX CO催化剂的活性维持,最终起到了维持基于CO的耐贵金属的MEA组件的活性的作用。最后,利用推流反应器方程进行数学建模以构建PROX反应图,通过该图可以通过最少的实验工作收集一对CO转化率和O2选择性值来确定CO和H2氧化的两个竞争反应速率常数。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号