首页> 外文学位 >A generalized cue-based approach to the automatic acquisition of subcategorization frames.
【24h】

A generalized cue-based approach to the automatic acquisition of subcategorization frames.

机译:一种基于通用提示的自动获取子类别框架的方法。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation has two objectives. The first is to present the formal foundations of a cue-based model of learning and show how it can be used in learning subcategorization frames. The other objective is to give further evidence of the role of the input in both automatic and human language acquisition. Two implementations of this model are presented. The first is a set of algorithms that can identify arguments, predicates, and subcategorization frames. It bootstraps from proper names and a small subset of pronouns. The other implementation does not assume any initial cues, and learning is based only on distributional regularities in the input. It presents a procedure for cue extraction and then demonstrates how these cues can be used in categorization and subcategorization. The two implementations achieved an overall accuracy of 98% and 97%, respectively. This performance level shows that the cue-based learning model proposed in this dissertation is able to capture language-specific properties given minimum or zero initial knowledge. The importance of this cue-based model stems from three main reasons. The first is that it presents a Natural Language Processing tool to acquire linguistic knowledge from minimum or zero initial knowledge with a level of accuracy that is significantly higher than that achieved by previous methods that assume much more initial knowledge. The second is the evidence it provides for the possibility of language acquisition using a small set of cues in the input by means of distributional analysis. Finally, this model is language-independent, which makes it extensible to other linguistic tasks and other languages with little parameterization.
机译:本文有两个目的。首先是介绍基于提示的学习模型的正式基础,并展示如何在学习子分类框架中使用它。另一个目的是进一步证明输入在自动和人类语言习得中的作用。给出了该模型的两种实现。第一个是可以识别参数,谓词和子分类框架的算法集。它从专有名称和一小部分代词进行引导。其他实现不假定任何初始线索,学习仅基于输入中的分布规律。它提供了提示提取的过程,然后演示了如何在分类和子分类中使用这些提示。两种实现方式的总体精度分别为98%和97%。该性能水平表明,本文提出的基于提示的学习模型能够在给定的初始知识最少或为零的情况下捕获特定于语言的属性。这种基于提示的模型的重要性来自三个主要原因。首先是它提供了一种自然语言处理工具,可从最少或零个初始知识中获取语言知识,其准确性水平明显高于假定更多初始知识的先前方法所达到的准确性。第二个证据是它提供了通过分布分析在输入中使用少量提示来进行语言习得的可能性。最后,该模型与语言无关,这使得它几乎不需要参数化即可扩展到其他语言任务和其他语言。

著录项

  • 作者

    Elghamry, Khaled.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Language Linguistics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 语言学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号