首页> 外文学位 >Dynamically variable focal length microlens by microfluidic and electroactive polymer approaches.
【24h】

Dynamically variable focal length microlens by microfluidic and electroactive polymer approaches.

机译:通过微流体和电活性聚合物方法动态改变焦距的微透镜。

获取原文
获取原文并翻译 | 示例

摘要

This research is on a development of a variable focusing microlens system. The studies of modern researchers have thrown new light on this subject, which has aroused intense interest in making tunable focusing microlenses. The most well-known methods are liquid crystal and electrowetting. Both methods require electrodes immersed in the electrolyte solution, causing severe optical distortion, and require complicated fabrication processes. Few attempts have thus far been developed to make variable focusing lens using other approaches.; However, two novel actuation mechanisms have been developed in this work for generating significant forces to change the physical dimensions of an elastic polymeric lens structure to control the focal length. The two proposed actuation mechanisms are: (1) the microfluidic and (2) the Electro-Active Polymer (EAP) actuations. By pneumatically regulating the pressure of the microfluidic chamber, the elastic lens can be deformed, causing the changes in the focal length. EAP is another method to transfer electrical energy to mechanical deformation. This energy transformation causes the deflection on the lens and induces its focal plane to be shifted.; For the microfluidic lens system, a novel PDMS to PDMS casting process to fabricate 3D convex elastic microlens diaphragm is developed. This new fabrication technique has a potential for producing low-cost elastic microlens arrays. Microlenses, with a diameter of 600∼1400 mum, are fabricated using this fabrication technique. The curvature changes of the microlens were from 1210mum to 3238mum. With this wide range of curvature changes, one can control the back focal length from 3.82 mm to 10.64 mm, and the numerical aperture from 0.09 to 0.24. The numerical aperture of this optical device can then reach 0.24, about 4 times that of a conventional planar diaphragm (NA = 0.05).; Moreover, a new "two-step copolymerization" technique has been developed to fabricate an elastic silicone-based gradient refractive index (GRIN) lens. This is a flat lens with a gradient refractive index distribution within the lens structure. Moreover, this GRIN lens is elastic, so it is deformable with high elongation under mechanical stresses. Finally, this lens is made by a dielectric material, and can be integrated easily into an EAP actuator, generating enough mechanical force to cause the deflection on the GRIN lens and induce a shift in focal length. The characteristics of GRIN lenses and EAP actuation have been studied in this work. It appears that this is the first reported work proposing a dynamically tunable focusing GRIN lens with an EAP actuation. Further research needs to be carrying out for optimizing the proposed approach for its desired application.
机译:这项研究是在开发可变聚焦微透镜系统。现代研究人员的研究为这一主题开辟了新的亮点,这引起了人们对制作可调焦微透镜的浓厚兴趣。最著名的方法是液晶和电润湿。两种方法都需要将电极浸入电解质溶液中,导致严重的光学畸变,并且需要复杂的制造工艺。迄今为止,很少有人尝试使用其他方法来制造可变焦距镜头。然而,在这项工作中已经开发出两种新颖的致动机构,以产生显着的力来改变弹性聚合物透镜结构的物理尺寸以控制焦距。提出的两种驱动机制是:(1)微流体驱动和(2)电活性聚合物(EAP)驱动。通过气动调节微流体腔室的压力,弹性透镜会变形,从而引起焦距的变化。 EAP是将电能转换为机械变形的另一种方法。这种能量转换导致透镜偏转,并引起其焦平面移动。对于微流体透镜系统,开发了一种新颖的PDMS到PDMS铸造工艺,以制造3D凸形弹性微透镜光阑。这种新的制造技术具有生产低成本弹性微透镜阵列的潜力。使用该制造技术来制造直径为600〜1400μm的微透镜。微透镜的曲率变化为1210μm至3238μm。通过这种大范围的曲率变化,可以将后焦距控制在3.82 mm至10.64 mm之间,并将数值孔径控制在0.09至0.24之间。然后,该光学装置的数值孔径可以达到0.24,约为传统平面光阑的数值孔径的四倍(NA = 0.05)。此外,已经开发了一种新的“两步共聚”技术来制造弹性硅基梯度折射率(GRIN)透镜。这是在透镜结构内具有梯度折射率分布的平面透镜。而且,该GRIN透镜是有弹性的,因此在机械应力下它可以以高伸长率变形。最后,该透镜由介电材料制成,可以轻松集成到EAP致动器中,产生足够的机械力以引起GRIN透镜上的偏转并引起焦距偏移。在这项工作中,已经研究了GRIN镜片和EAP驱动的特性。看来,这是首次报道的建议采用EAP致动的动态可调聚焦GRIN透镜的工作。需要进行进一步的研究,以针对其所需的应用来优化所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号