首页> 外文学位 >Deciphering trace element behavior during basaltic magmatism on the moon through ion microprobe analyses of ancient lunar basalts, lunar volcanic glasses, and a terrestrial analogue.
【24h】

Deciphering trace element behavior during basaltic magmatism on the moon through ion microprobe analyses of ancient lunar basalts, lunar volcanic glasses, and a terrestrial analogue.

机译:通过对古代月球玄武岩,月球火山玻璃和陆地类似物进行离子微探针分析,了解月球玄武岩浆活动期间的微量元素行为。

获取原文
获取原文并翻译 | 示例

摘要

Ion microprobe analyses of individual phases in basaltic samples from the Earth and Moon were used to provide information about the behavior and distribution of trace elements during basaltic magmatism. This information in turn has provided clues about the origin of lunar basalts, the composition of the lunar interior, and the formation of the Moon itself.; Detailed analyses of basaltic samples from the Makaopuhi Lava Lake, Hawaii were used to determine what factors affect the trace element record of a basaltic system. Geologic mechanisms such as gravitational settling and convective transport of minerals have significant effects on the trace element record. However, it is also shown that micro-scale factors such as mineral-melt interface kinetics can also affect the trace element record. The insights gained from these results have been extended to make inferences for basaltic systems where geological constraints are limited (i.e., the Moon).; Analyses of basaltic samples from the Moon provide a glimpse into the composition and structure of the lunar interior. For example, thorium and samarium data from lunar volcanic glasses show that the lunar mantle is heterogeneous on a large-scale. In addition, these data show that compositional variations in the glasses are a function of phase heterogeneity in the cumulate source region. This compositional information is important because it allows one to calculate the bulk composition of the mantle, which in turn is critical for understanding and testing different models of lunar evolution, such as the formation of a lunar magma ocean, generation of mare basalts, the origin of compositional asymmetry, and the thermal evolution of the Moon.; Trace element analyses of individual minerals in the Apollo 14 high-Al basalts provide evidence for compositional complexity in the lunar mantle. The trace element data show that these basalts were produced by fractional crystallization of basaltic melts that were produced by melting multiple trace element-rich sources in the deep lunar mantle. These results require efficient processing and convective overturn within the lunar mantle and imply that overturn and mixing of the mantle had to occur within 260 million years after the formation of the Moon.
机译:利用来自地球和月球的玄武岩样品中各个相的离子微探针分析,可提供有关玄武岩浆作用期间微量元素的行为和分布的信息。这些信息反过来提供了有关月球玄武岩起源,月球内部组成以及月球本身形成的线索。对夏威夷Makapouphi熔岩湖的玄武岩样品进行了详细分析,以确定哪些因素影响了玄武岩系统的痕量元素记录。矿物的重力沉降和对流运输等地质机制对痕量元素记录有重要影响。但是,还表明,诸如矿物-熔体界面动力学之类的微观尺度因素也会影响痕量元素的记录。从这些结果中获得的见识已经扩展到对地质约束有限的玄武岩系统(即月球)进行推断。对月球上玄武岩样品的分析提供了月球内部组成和结构的一瞥。例如,来自月球火山玻璃的or和mar数据显示,月幔在很大程度上是异质的。此外,这些数据表明,玻璃中的成分变化是累积源区域中相异质性的函数。这种成分信息很重要,因为它可以让人们计算出地幔的整体成分,这对于理解和测试不同的月球演化模型(例如月球岩浆海洋的形成,母马玄武岩的形成,成因)至关重要。成分不对称性以及月球的热演化。阿波罗14号高铝玄武岩中单个矿物的痕量元素分析提供了月幔中成分复杂性的证据。微量元素数据表明,这些玄武岩是通过玄武质熔体的分步结晶而产生的,玄武质熔体是通过在月球深部地幔中熔化多种富含微量元素的来源而产生的。这些结果要求在月球地幔内进行有效的处理和对流翻转,这意味着地幔的翻转和混合必须在月球形成后的2.6亿年内发生。

著录项

  • 作者

    Hagerty, Justin James.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Geochemistry.; Geology.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号