首页> 外文学位 >Systems pharmacology modeling of rituximab and doxorubicin in non-Hodgkin's lymphoma.
【24h】

Systems pharmacology modeling of rituximab and doxorubicin in non-Hodgkin's lymphoma.

机译:非霍奇金淋巴瘤中利妥昔单抗和阿霉素的系统药理模型。

获取原文
获取原文并翻译 | 示例

摘要

Non-Hodgkin's lymphoma (NHL), a heterogeneous group of lymphocyte malignancies, is the most prevalent hematological cancer in adults, accounting for 4% of cancer-related deaths in the U.S. The overall 5-year survival rate of NHL is 69%. Patients with low-grade lymphomas are considered incurable with current therapy, and although aggressive lymphomas may respond to aggressive combination chemotherapy, more than half of patients eventually relapse. Rituximab, the first generation anti-CD20 antibody, has demonstrated substantial improvement in patient survival, especially when combined with standard chemotherapy, and has become the cornerstone of treatment for B-cell NHL (B-NHL) as well as other B-cell malignancies. A range of potential mechanisms has been proposed for rituximab actions, including complement-dependent cytotoxicity (CDC), antibody-dependent cell mediated cytotoxicity (ADCC), and direct signaling of cell death. In addition, chemo-sensitization has been reported in rituximab treated lymphoma cells, which may occur through modulation of cell apoptotic signaling mechanisms, and this effect might contribute to the clinical benefit of administering rituximab in combination with cytotoxic agents. However, the pharmacodynamic (PD) relationships of rituximab-based drug combinations are poorly understood, and dosing schedules are largely empirically based. Therefore, the major objective of this dissertation is to develop a quantitative systems pharmacology (QSP) platform of rituximab effects in B-NHL that enhance understanding of the biological mechanisms underlying rituximab action and interaction, predict rituximab-based chemotherapy in xenograft systems, and assess exposure-response relationships and the nature of rituximab-doxorubicin combinations on lymphoma cell survival and proliferation.;Characterization of rituximab pharmacokinetics (PK) and PD is challenging. Not only patient characteristics, but also disease-related factors (e.g., disease stage and target burden) can contribute to large variability in antibody disposition and therapeutic outcomes. A significant impact of CD20 antigen expression on rituximab clearance reflects the properties of target-mediated drug disposition. A CD20 systems model, which integrates target binding and dynamics of intracellular apoptotic signaling with tumor responses, successfully predicted the combinatorial chemotherapeutic effects of rituximab with fenretinide or rhApo2L in NHL xenografts (reviewed in Chapter 3). This model was further extended to the combination of rituximab-doxorubicin in a Ramos lymphoma xenograft system in Chapter 4. The predictive performance was assessed by comparing model simulations to experimental observations from a murine animal model of Ramos cell xenografts. The integrated systems pharmacodynamic model described tumor growth dynamics well in all treatment groups. In addition, the model simulated expression levels of the cellular interaction biomarker, Bcl-xL, were in good agreement with western blot analysis of Bcl-xL in ex vivo tumor samples.;To better understand the underlying biological mechanisms of rituximab-doxorubicin interactions, in vitro studies on lymphoma cell survival (Chapter 5) and proliferation (Chapter 6) were conducted, coupled with mechanism-based pharmacodynamic systems analyses. Rituximab induced homotypic adhesion, along with apoptotic and non-apoptotic modes of cell death. However, rituximab was found not to alter cell cycle distribution. In addition to accelerating cell apoptotic processes, doxorubicin also inhibited cell proliferation, which appears to be associated with cell cycle arrest in the G2/M phase. The final mechanism-based PD model captured all dynamic profiles for control, single agent, and combination drug treatments, and suggests that rituximab-induced chemo-sensitization in B-NHL cells follows an apoptotic pathway and might be synergistic when rituximab is combined with relatively low concentrations of cytotoxic agents.;Rituximab has revolutionized NHL treatment in the past two decades; however, suboptimal response and refractory/resistant disease continue to emerge in the clinic, and development of effective anti-lymphoma treatment remains an active area of research. Network-based approaches serve as efficient tools for analyzing complex biological systems and the dynamic interplay among the molecular components that give rise to emergent pathological and pharmacological system properties. A Boolean network of main intracellular mechanisms governing B-NHL proliferation and apoptosis was constructed, which included 102 nodes, 186 edges, and 12 drug interventions (Chapter 7). A graphic-based algorithm identified key structural features, such as network hubs, feedback loops, and species dependency. A logical steady-state analysis confirmed that the CD79B gain-of-function mutation contributes to uncontrolled lymphoma cell proliferation. Dynamical behavior of the B-NHL network following rituximab-based chemotherapy was calibrated with experimental data. This network-based systems pharmacology approach can be used to query key pharmacological targets in B-NHL and might provide a rationale for designing new intervention strategies.
机译:非霍奇金淋巴瘤(NHL)是淋巴细胞恶性肿瘤的异质性组,是成年人中最普遍的血液学癌症,占美国癌症相关死亡的4%.NHL的整体5年生存率是69%。低度淋巴瘤患者被认为无法通过当前疗法治愈,尽管侵袭性淋巴瘤可能对侵略性联合化疗产生反应,但一半以上的患者最终会复发。第一代抗CD20抗体利妥昔单抗已显示出患者生存率的显着提高,尤其是与标准化学疗法联用时,已成为治疗B细胞NHL(B-NHL)和其他B细胞恶性肿瘤的基石。已提出了利妥昔单抗作用的一系列潜在机制,包括补体依赖性细胞毒性(CDC),抗体依赖性细胞介导的细胞毒性(ADCC)和细胞死亡的直接信号传导。另外,已经报道了在经利妥昔单抗治疗的淋巴瘤细胞中发生化学致敏作用,这可能是通过调节细胞凋亡信号传导机制而发生的,这种作用可能有助于与细胞毒剂联合使用利妥昔单抗的临床获益。然而,人们对基于利妥昔单抗的药物组合的药效学(PD)关系了解得很少,并且给药方案很大程度上是基于经验的。因此,本论文的主要目的是建立B-NHL中利妥昔单抗作用的定量系统药理学(QSP)平台,以增强对利妥昔单抗作用和相互作用的生物学机制的了解,预测异种移植系统中基于利妥昔单抗的化学疗法,并评估暴露-反应关系以及利妥昔单抗-阿霉素组合的性质对淋巴瘤细胞存活和增殖的影响;利妥昔单抗药代动力学(PK)和PD的表征具有挑战性。不仅患者特征,而且与疾病相关的因素(例如疾病阶段和靶标负担)也可导致抗体处置和治疗结果的较大差异。 CD20抗原表达对利妥昔单抗清除率的重大影响反映了靶标介导的药物处置的特性。 CD20系统模型将靶标结合和细胞内凋亡信号传导与肿瘤反应的动力学整合在一起,成功预测了利妥昔单抗与芬维A胺或rhApo2L在NHL异种移植物中的组合化学治疗作用(在第3章中进行了综述)。该模型在第4章中进一步扩展为在Ramos淋巴瘤异种移植系统中利妥昔单抗-阿霉素的组合。通过将模型模拟与Ramos细胞异种移植的鼠科动物实验结果进行比较,评估了预测性能。集成系统的药效学模型很好地描述了所有治疗组的肿瘤生长动力学。此外,该模型模拟的细胞相互作用生物标记物Bcl-xL的表达水平与离体肿瘤样品中Bcl-xL的Western印迹分析非常吻合。为了更好地了解利妥昔单抗与阿霉素相互作用的潜在生物学机制,进行了关于淋巴瘤细胞存活率(第5章)和增殖(第6章)的体外研究,以及基于机理的药效学系统分析。利妥昔单抗诱导同型粘附,以及细胞死亡的凋亡和非凋亡模式。然而,发现利妥昔单抗不会改变细胞周期分布。除了加速细胞凋亡过程外,阿霉素还抑制细胞增殖,这似乎与G2 / M期细胞周期停滞有关。基于最终机制的PD模型捕获了用于对照,单药和联合药物治疗的所有动态图谱,并表明利妥昔单抗诱导的B-NHL细胞化学致敏性遵循凋亡途径,当利妥昔单抗与相对有效剂量联合使用时可能具有协同作用在过去的二十年中,利妥昔单抗彻底改变了NHL的治疗方法。然而,临床上仍出现次优反应和难治性/耐药性疾病,有效的抗淋巴瘤治疗方法的开发仍然是研究的活跃领域。基于网络的方法可作为分析复杂的生物系统和分子成分之间动态相互作用的有效工具,这些相互作用会导致新兴的病理和药理系统特性。构建了控制B-NHL增殖和凋亡的主要细胞内机制的布尔网络,包括102个节点,186个边缘和12种药物干预措施(第7章)。基于图形的算法确定了关键的结构特征,例如网络集线器,反馈回路以及物种依赖性。逻辑稳态分析证实CD79B功能获得性突变导致不受控制的淋巴瘤细胞增殖。基于利妥昔单抗的化疗后,B-NHL网络的动力学行为已通过实验数据进行了校准。这种基于网络的系统药理学方法可用于查询B-NHL中的关键药理学目标,并可能为设计新的干预策略提供依据。

著录项

  • 作者

    Zhao, Xiaochen.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Pharmaceutical sciences.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 344 p.
  • 总页数 344
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号