首页> 外文学位 >Kinetics of Alkaline Activation of Slag and Fly ash-Slag Systems.
【24h】

Kinetics of Alkaline Activation of Slag and Fly ash-Slag Systems.

机译:矿渣和粉煤灰-矿渣系统碱性活化的动力学。

获取原文
获取原文并翻译 | 示例

摘要

Alkali-activated aluminosilicates, commonly known as "geopolymers", are being increasingly studied as a potential replacement for Portland cement. These binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a combination of both along with a silica-and-alumina rich material, such as fly ash or slag, to form a final product with properties comparable to or better than those of ordinary Portland cement.;The kinetics of alkali activation is highly dependent on the chemical composition of the binder material and the activator concentration. The influence of binder composition (slag, fly ash or both), different levels of alkalinity, expressed using the ratios of Na2O-to-binders (n) and activator SiO2-to-Na2O ratios (Ms), on the early age behavior in sodium silicate solution (waterglass) activated fly ash-slag blended systems is discussed in this thesis.;Optimal binder composition and the n values are selected based on the setting times. Higher activator alkalinity (n value) is required when the amount of slag in the fly ash-slag blended mixtures is reduced. Isothermal calorimetry is performed to evaluate the early age hydration process and to understand the reaction kinetics of the alkali activated systems. The differences in the calorimetric signatures between waterglass activated slag and fly ash-slag blends facilitate an understanding of the impact of the binder composition on the reaction rates. Kinetic modeling is used to quantify the differences in reaction kinetics using the Exponential as well as the Knudsen method. The influence of temperature on the reaction kinetics of activated slag and fly ash-slag blends based on the hydration parameters are discussed.;Very high compressive strengths can be obtained both at early ages as well as later ages (more than 70 MPa) with waterglass activated slag mortars. Compressive strength decreases with the increase in the fly ash content. A qualitative evidence of leaching is presented through the electrical conductivity changes in the saturating solution. The impact of leaching and the strength loss is found to be generally higher for the mixtures made using a higher activator Ms and a higher n value. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) is used to obtain information about the reaction products.
机译:碱活化的铝硅酸盐,通常称为“地聚合物”,正在被越来越多地研究作为波特兰水泥的潜在替代品。这些粘合剂使用碱性活化剂(通常是碱金属硅酸盐,碱金属氢氧化物或两者的组合)以及富含二氧化硅和氧化铝的材料(例如粉煤灰或矿渣)来形成最终产品,其性能可与以下产品媲美或更好普通硅酸盐水泥。碱活化的动力学高度取决于粘合剂材料的化学组成和活化剂的浓度。粘结剂组成(矿渣,粉煤灰或两者兼有),不同碱度水平的影响,以Na2O与粘结剂的比(n)和SiO2与Na2O活化剂的比(Ms)来表示。本文讨论了硅酸钠溶液(水玻璃)活化的粉煤灰-矿渣共混体系。;根据凝结时间选择最佳的粘结剂组成和n值。当减少粉煤灰-矿渣混合混合物中的矿渣量时,需要更高的活化剂碱度(n值)。进行等温量热法以评估早期水合过程并了解碱活化系统的反应动力学。水玻璃活化炉渣和粉煤灰-炉渣掺合物之间的量热特征的差异有助于理解粘合剂组合物对反应速率的影响。动力学建模用于使用指数法和克努森方法定量反应动力学的差异。讨论了温度对基于水化参数的活性矿渣和粉煤灰-矿渣共混物反应动力学的影响。水玻璃在早期和晚期(大于70 MPa)均可获得很高的抗压强度活性矿渣砂浆。抗压强度随粉煤灰含量的增加而降低。通过饱和溶液中电导率的变化,可以给出浸出的定性证据。对于使用较高的活化剂Ms和较高的n值制备的混合物,发现浸出和强度损失的影响通常较高。衰减全反射傅里叶变换红外光谱(ATR-FTIR)用于获得有关反应产物的信息。

著录项

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Civil.;Engineering Materials Science.
  • 学位 M.S.
  • 年度 2012
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号