首页> 外文学位 >Pseudomonas aeruginosa lung infection and respiratory muscle weakness: Role of cytokines in diaphragm muscle dysfunction.
【24h】

Pseudomonas aeruginosa lung infection and respiratory muscle weakness: Role of cytokines in diaphragm muscle dysfunction.

机译:铜绿假单胞菌肺部感染和呼吸肌无力:细胞因子在diaphragm肌功能障碍中的作用。

获取原文
获取原文并翻译 | 示例

摘要

The primary muscle of respiration is the diaphragm. Diaphragm muscle dysfunction and ventilatory pump failure are well documented phenomena in animal models of sepsis. However, the primary cellular mechanisms underlying respiratory muscle dysfunction in sepsis are poorly understood. In addition, most investigations of respiratory muscle dysfunction in sepsis have been performed in models involving high doses of bacterial endotoxin and these investigations have been criticized on the basis of questionable relevance to human sepsis. Therefore, the objective in the first study of this thesis was to study respiratory muscle dysfunction in a more clinically relevant animal model, namely, the Pseudomonas aeruginosa pulmonary infection model. Remote inflammatory processes in different diseases, such as cancer, arthritis, sepsis, and cystic fibrosis are known to contribute to muscle wasting and weakness through more widespread systemic effects. In keeping with the above notion, we hypothesized that sustained P. aeruginosa lung infection would cause diaphragmatic and limb muscle weakness. In this thesis, we demonstrate for the first time that persistent pulmonary infection with P. aeruginosa induces significant dose- and time-dependent contractile dysfunction of the diaphragm. By comparison, prototypical slow- and fast-twitch hindlimb muscles were not influenced by pulmonary P. aeruginosa infection.;P. aeruginosa lung infection is a major cause of morbidity and mortality among cystic fibrosis (CF) patients and many patients with CF have weak peripheral and respiratory muscles. Although the role of pro-inflammatory cytokines has been extensively studied within the lungs of CF patients, the involvement of these cytokines in skeletal muscle dysfunction in animal models of CF or in human CF patients has not been studied. Therefore, in the third study of this thesis we have used mice sharing the same genetic defect as CF patients (Cftr knockout mice), in combination with our model of P. aeruginosa lung infection, to address several fundamental questions related to muscle function in CF. Our first objective in this portion of the thesis was to determine if diaphragmatic skeletal muscle cells express the CFTR mRNA. Our second objective was to ascertain whether intrinsic differences between CF and wild-type muscle cells could be detected in vitro, which might differentially affect the regulation of pro-inflammatory mediators in the setting of infection/inflammation. Our third objective was to evaluate possible differences in the ability of respiratory muscles to generate force prior to and after P. aeruginosa lung infection in Cftr knockout mice, as compared to their wild-type littermates. Finally, we aimed to determine if the absence of CFTR expression would predispose to muscle dysfunction triggered by up-regulation of intra-diaphragmatic pro-inflammatory gene expression. Our major results indicate that: First, in vitro stimulation with pro-inflammatory cytokines (TNF-α, IL-1α, and IFN-γ) and LPS (extracted from Pseudomonas aeruginosa) triggered increased expression of pro-inflammatory mediators (iNOS, RANTES, MIP-1α, MIP-1β, MIP-2 and KC) in both Cftr -/- and wild-type diaphragmatic myotubes, but the magnitude of cytokine/chemokine upregulation was significantly greater in CF than in wild-type diaphragm muscle cells. Second, CF mice are more vulnerable to diaphragm contractile dysfunction and increased intra-diaphragmatic pro-inflammatory gene expression (TNF-α, IL-1α, IL-β, IL-18, RANTES, MIP-1α, and MIP-2) after pulmonary P. aeruginosa infection in comparison with wild-type mice.;In the final study of this thesis, we sought to test the hypothesis that increased diaphragm muscle activation would lead to increased production of intra-diaphragmatic cytokine expression, since this could possibly explain the greater susceptibility of the diaphragm to express pro-inflammatory cytokines in response to pulmonary P. aeruginosa infection as compared with the hindlimb muscle. To test this hypothesis, we subjected rats to inspiratory resistive loading (IRL), corresponding to 45-50% of the maximum inspiratory pressure, and described that mRNA levels of IL-1β, IL-6, and to a lesser extent, IL-4, IL-10, TNF-α, and IFN-γ were all significantly increased in a time-dependent fashion in the diaphragm but not hindlimb muscle (gastrocnemius) of loaded animals. In addition, elevated protein levels of IL-1β and IL-6 in response to loading were confirmed with immunoblotting and immunostaining. We also detected significant IL-6 protein to be localized inside diaphragmatic muscle fibers of loaded animals. We conclude that increased diaphragm muscle activity during resistive loading induces upregulation of pro-inflammatory cytokine gene expression in the diaphragm, which could also provide an explanation for the greater cytokine expression observed in the diaphragms of animals with P. aeruginosa lung infection.;Because skeletal muscles can express a variety of immune modulating molecules such as cytokines, chemokines, adhesion molecules, and major histocompatibility molecules, the objective of the second study in this thesis was to study the possible role of pro-inflammatory cytokines in diaphragm muscle dysfunction in our animal model. Our results indicate for the first time that intra-diaphragmatic pro-inflammatory cytokine gene expression (TNF-α, IL-1α, IL-1β, IL-6, and IL-18) is highly up-regulated in infected animals and the magnitude of such upregulation is dependent upon the dose of P. aeruginosa lung infection. Parallel to the absence of muscle contractile dysfunction in hindlimb muscle under the same conditions, P. aeruginosa infection did not alter the levels of pro-inflammatory gene expression within the hindlimb muscle. To further address the involvement of muscle-derived pro-inflammatory cytokines in diaphragmatic contractile dysfunction, we have employed recombinant adenovirus (Ad) as a vehicle for systemic delivery of the anti-inflammatory cytokine IL-10, in order to shift the balance between pro- and anti-inflammatory cytokines within the diaphragm toward a more anti-inflammatory profile. We report here that systemic delivery of Ad-IL-10 suppresses pro-inflammatory gene expression and improves force generating capacity of the diaphragm in P. aeruginosa infected animals. This finding emphasizes the role of anti-inflammatory cytokines as beneficial immune modulators in respiratory muscle failure caused by pro-inflammatory cytokines.
机译:呼吸的主要肌肉是隔膜。在脓毒症动物模型中,膜肌功能障碍和通气泵衰竭是有据可查的现象。然而,对败血症中呼吸肌功能障碍的主要细胞机制了解甚少。另外,脓毒症中呼吸肌功能障碍的大多数研究都是在涉及高剂量细菌内毒素的模型中进行的,这些研究基于与人类败血症的可疑相关性而受到批评。因此,本文的第一项研究的目的是在临床上更相关的动物模型即铜绿假单胞菌肺部感染模型中研究呼吸肌功能障碍。众所周知,癌症,关节炎,败血症和囊性纤维化等不同疾病中的远程炎症过程会通过更广泛的全身性作用而导致肌肉消瘦和虚弱。与上述观点一致,我们假设持续的铜绿假单胞菌肺部感染会导致diaphragm肌和四肢肌肉无力。在本文中,我们首次证明铜绿假单胞菌的持续性肺部感染可引起明显的剂量依赖性和时间依赖性的diaphragm肌收缩功能障碍。相比之下,肺部铜绿假单胞菌感染不会影响典型的慢速和快速抽搐后肢肌肉。铜绿肺部感染是囊性纤维化(CF)患者发病和死亡的主要原因,许多CF患者的外周和呼吸肌无力。尽管促炎性细胞因子的作用已在CF患者的肺部进行了广泛研究,但尚未研究这些细胞因子与CF动物模型或人CF患者骨骼肌功能障碍的关系。因此,在本论文的第三项研究中,我们使用了与CF患者具有相同遗传缺陷的小鼠(Cftr基因敲除小鼠),并结合我们的铜绿假单胞菌肺部感染模型,来解决与CF中肌肉功能相关的几个基本问​​题。在本文的这一部分中,我们的首要目标是确定横diaphragm膜骨骼肌细胞是否表达CFTR mRNA。我们的第二个目标是确定是否可以在体外检测到CF和野生型肌肉细胞之间的内在差异,这可能会在感染/发炎的情况下差异性地影响促炎介质的调控。我们的第三个目标是评估与野生型同窝仔相比,在Cftr基因敲除小鼠中铜绿假单胞菌肺部感染之前和之后呼吸肌产生力量的能力可能存在差异。最后,我们旨在确定是否缺少CFTR表达会导致由膜上促炎性基因表达上调触发的肌肉功能障碍。我们的主要结果表明:首先,在体外用促炎细胞因子(TNF-α,IL-1α和IFN-γ)和LPS(从铜绿假单胞菌中提取)进行刺激会触发促炎介质(iNOS,RANTES)的表达增加,MIP-1α,MIP-1β,MIP-2和KC)在Cftr-/-和野生型隔膜肌管中均存在,但CF中的细胞因子/趋化因子上调幅度明显大于野生型隔膜肌细胞。其次,CF小鼠在感染后更容易发生隔膜收缩功能障碍和膜内促炎基因表达(TNF-α,IL-1α,IL-β,IL-18,RANTES,MIP-1α和MIP-2)增加与野生型小鼠相比,肺部铜绿假单胞菌感染。;在本论文的最终研究中,我们试图检验以下假设:diaphragm肌激活增加会导致-肌细胞因子表达的产生增加,因为这可能解释了与后肢肌肉相比,隔膜对肺部铜绿假单胞菌感染表达促炎细胞因子的敏感性更高。为了验证这一假设,我们对大鼠进行了吸气阻力负荷(IRL),相当于最大吸气压力的45-50%,并描述了IL-1β,IL-6和较小程度的IL-如图4所示,IL-10,TNF-α和IFN-γ均以时间依赖性方式在受压动物的横the膜而不是后肢肌肉(腓肠肌)中显着增加。另外,通过免疫印迹和免疫染色证实了响应于负载的IL-1β和IL-6的蛋白质水平升高。我们还检测到重要的IL-6蛋白位于负载动物的隔膜肌纤维内部。我们得出结论,在阻力负荷过程中增加diaphragm肌的活动会诱导the肌中促炎性细胞因子基因表达的上调,这也可以为在铜绿假单胞菌肺部感染动物的隔膜中观察到更高的细胞因子表达提供解释。因为骨骼肌可以表达多种免疫调节分子,例如细胞因子,趋化因子,粘附分子和主要组织相容性分子,本文第二项研究的目的是研究促炎细胞因子在我们的动物模型中对diaphragm肌功能障碍的可能作用。我们的结果首次表明,在感染动物中膜内促炎细胞因子基因表达(TNF-α,IL-1α,IL-1β,IL-6和IL-18)高度上调。这种上调的程度取决于铜绿假单胞菌肺部感染的剂量。在相同条件下,后肢肌肉没有肌肉收缩功能障碍的同时,铜绿假单胞菌感染并没有改变后肢肌肉中促炎基因表达的水平。为了进一步解决肌肉源性促炎细胞因子在diaphragm肌收缩功能障碍中的作用,我们采用重组腺病毒(Ad)作为抗炎细胞因子IL-10全身递送的载体,以改变促炎细胞因子IL-10之间的平衡。膜内的抗炎细胞因子朝着更抗炎的方向发展。我们在这里报告Ad-IL-10的全身传递抑制促炎基因表达并提高铜绿假单胞菌感染动物的隔膜的力量产生能力。该发现强调了抗炎细胞因子作为有益的免疫调节剂在由促炎细胞因子引起的呼吸肌衰竭中的作用。

著录项

  • 作者

    Divangahi, Maziar.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Health Sciences Immunology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号